High-Performance Gearheads for Servo and Stepper Motors # $Harmonic Planetary^{\text{\tiny B}}$ HPGP / HPG / HPN / HPF / NEW HPG Helical # Harmonic Drive® CSG-GH / CSF-GH # Revolutionary Technology for Evolving Industries Harmonic Drive LLC engineers and manufactures precision servo actuators, gearheads and gear component sets. We work with industry-leading customers and companies of all sizes to provide both standard product and custom-engineered solutions to meet their mission critical application requirements. The majority of the products sold by HDLLC are proudly made at our US headquarters and manufacturing facility in Massachusetts. Affiliated companies in Japan (Harmonic Drive Systems, Inc.) and Germany (Harmonic Drive AG) provide additional manufacturing capabilities. 1955 Walt Musser's Patent Application for Strain Wave Gearing 1963 Harmonic Drive® components used in inertial damping system for an unmanned helicopter 1971 Lunar Rover was first driven on the moon by Dave Scott. Each of the Rover's wheels were driven by a Hermetically Sealed Harmonic Drive® actuator 1977 Developed first mechatronic products (Servo Actuators) combining Harmonic Drive® gearing with servo motors and feedback 1986 First use of Harmonic Drive® gear used in semiconductor wafer handling robot 1988 "S" Tooth Profile was patented providing double the torque, double the life and double the stiffness 1990 Began production of planetary gears Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 With over 50 years of experience, our expert engineering and production teams continually develop enabling technologies for the evolving motion control market. We are proud of our outstanding engineering capabilities and successful history of providing customer specific solutions to meet their application requirements. Our high-precision, zero-backlash Harmonic Drive® gears and Harmonic Planetary® gears play critical roles in robotics, spaceflight applications, semiconductor manufacturing equipment, factory automation equipment, medical diagnostics and surgical robotics. 1998 Market introduction of high-precision HPG Harmonic Planetary® gearheads with low backlash for life 1999 Ultra-flat Harmonic Drive® gearing developed 2004 Mars Exploration Rover Opportunity began a 90-day mission to explore the surface of Mars. 10" years later it is still operating and making new 2004 Market introduction of the CSG high torque Harmonic Drive® gear with increased torque capacity and life 2011 Robonaut 2 launches on STS-133 and becomes the first permanent robotic crew member of the International Space Station 2011 Introduction of Hollow Shaft Harmonic Planetary® gear unit 2015 2015 DARPA Robotics Challenge # **Innovative High Performance Gearheads for Servomotors** # High Accuracy, High Torsional Stiffness, Long Life Precision Harmonic Planetary® gearheads and Harmonic Drive® gearheads offer high performance for servomotors with a wide range of available gear ratios and torque capacities. Building a high precision actuator can be easily achieved by coupling a servomotor to one of our precision Quick Connect® gearheads. # CONTENTS | Overview | 2-3 | |--|---------| | Product Lines | 6-7 | | Operating Principles | 8-9 | | Quick Connect® Gearheads | | | HarmonicPlanetary® (Ratios 3:1 to 50:1) | | | HPGP High Torque Series | 18-29 | | HPG Standard Series | 30-41 | | HPG Helical Series | 42-51 | | HPG Right Angle Series | 52-61 | | HPN Value Series NEW ratios coming soon! | 64-71 | | | | | HarmonicDrive® (Ratios 50:1 to 160:1) | | | CSG-GH High Torque Series | 76-85 | | CSF-GH Standard Series | 86-95 | | Planetary Gear Units | | | HarmonicPlanetary® (Ratios 3:1 to 50:1) | | | Hollow Shaft HPF Series | 104-109 | | Input Shaft HPG Series | 110-119 | | Technical Information | | | Efficiency | 122-139 | | Output Bearing Specifications | 141-144 | | Input Bearing Specifications | 145-146 | | Assembly | 147-149 | | Mechanical Tolerances | 150 | | Lubrication | 151-152 | | Safety | 154 | | | | # **Product Line** #### **Quick Connect Gearheads** HarmonicPlanetary* HPGP High Torque Series (Peak torque 12Nm to 3940Nm) | Size | Outline Dimension | Reduction ratio | Back | lash*1 | Matarpawar | |------------|-------------------|-----------------------|-------------|-------------|-------------| | Size | (mm) | rieduction ratio | Standard | Reduced | Motor power | | 11 | □40 | 5, 21, 37, 45 | ≤ 3 arc-min | n/a | 10W~200W | | 14, 20, 32 | □60, □90, □120 | E 11 15 01 00 45 | ≤ 3 arc-min | ≤ 1 arc-min | 30W~4kW | | 50 | □170 | 5, 11, 15, 21, 33, 45 | ≤ 3 arc-min | ≤ 1 arc-min | 500W~10kW | | 65 | □230 | 4, 5, 12, 15, 20, 25 | ≤ 3 arc-min | ≤ 1 arc-min | 1.3kW~15kW | ¹ For details of repeatability and transmission accuracy, refer to HPGP performance table on page 20. HarmonicPlanetary* HPG Standard Series (Peak torque 5Nm to 3200Nm) | Size | Outline Dimension | Dimension Reduction ratio | | klash*1 | Mataumannau | |------------|-------------------|------------------------------|-------------|-------------|-------------| | Oize | (mm) | rieduction ratio | Standard | Reduced | Motor power | | 11 | □40 | 5, 9, 21, 37, 45 | ≤ 3 arc-min | n/a | 10W~100W | | 14, 20, 32 | □60, □90, □120 | 2 5 11 15 21 22 45 | ≤ 3 arc-min | ≤ 1 arc-min | 30W∼3.5kW | | 50 | □170 | 3, 5, 11, 15, 21, 33, 45 | ≤ 3 arc-min | ≤ 1 arc-min | 500W~10kW | | 65 | □230 | 4, 5, 12, 15, 20, 25, 40, 50 | ≤ 3 arc-min | ≤ 1 arc-min | 1.3kW~15kW | ^{*1} For details of repeatability and transmission accuracy, refer to HPG Performance table on page 32. HarmonicPlanetary* **HPG Helical Series** (Peak torque 5Nm to 400Nm) **New Two-Stage Ratios** Coming Soon! NEW | 0: | Outline Dimension | Deducation materi | Back | lash*2 | Mataumannau | |------|-------------------|------------------------|-------------|-------------|------------------| | Size | (mm) | Reduction ratio*1 | Standard | Reduced | Motor power | | 11 | □40 | 4, 5, 6, 7, 8, 9, 10 | ≤ 3 arc-min | n/a | 10W ~ 100W | | 14 | □ 60 | 3, 4, 5, 6, 7, 8, 9,10 | ≤ 3 arc-min | ≤ 1 arc-min | 30W ∼ 3.5kW | | 20 | □ 90 | 3, 4, 5, 6, 7, 8, 9,10 | ≤ 3 arc-min | ≤ 1 arc-min | $500W \sim 10kW$ | | 32 | □120 | 3, 4, 5, 6, 7, 8, 9,10 | ≤ 3 arc-min | ≤ 1 arc-min | 1.3kW ∼ 15kW | ¹ New ratios coming soon: 15, 20, 25, 30, 40, 45, 50. 2 For details of repeatability and transmission accuracy, refer to HPG performance table on page 44. HarmonicPlanetary* HPG Right Angle Series (Peak torque 150Nm to 2200Nm) | Size | Outline Dimension (mm) | Reduction ratio | Backlash*1
Standard | Motor power | |--------|------------------------|---------------------------|------------------------|-------------| | 32, 50 | □120, □170 | 5, 11, 15, 21, 33, 45 | ≤ 3 arc-min | 500W~8kW | | 65 | □230 | 5, 12, 15, 20, 25, 40, 50 | ≤ 3 arc-min | 2kW~8kW | ^{*1} For details of repeatability and transmission accuracy, refer to HPG Right Angle performance table on page 55. HarmonicPlanetary* HPN Standard Series (Peak torque 9Nm to 752Nm) **New Two-Stage Ratios** Coming Soon! | Size | Outline Dimension | Reduction ratio *1 | Back | klash | | |------|-------------------|----------------------------|-------------|-------------|--------------| | Size | (mm) | neduction ratio | One stage | Two stage | Motor power | | 11 | □42 | 4, 5, 7, 10, 16, 20, 30 | | | 30W ~ 150W | | 14 | □60 | | ≤ 5 arc-min | ≤ 7 arc-min | 100W ~ 600W | | 20 | □90 | 3, 4, 5, 7, 10, 13, 21, 31 | | | 200W ~ 2kW | | 32 | □115 | | | | 400W ∼ 7kW | | 40 | □142 | | | | 500W ∼ 7.5kW | ^{*1} One stage reduction ratio - 3, 4, 5, 7, 10, two stage reduction ratio - 13, 16, 20, 21, 30, 31. New ratios coming soon: 15, 20, 25, 30, 40, 45, 50. Sold & Serviced by: **ELECTROMATE** 6 HarmonicPlanetary*& HarmonicDrive* Gearheads #### HarmonicDrive * CSG-GH High Torque Series (Peak torque 23Nm to 3419Nm) **Zero-Backlash** | Size | Outline Dimension (mm) | Reduction ratio | Repeatability
(arc sec)*1 | Transmission
Accuracy (arc min)*1 | Motor power | |------|------------------------|-----------------------|------------------------------|--------------------------------------|-------------| | 14 | □60 | 50, 80, 100 | ±10 | 1.5 | 30W~100W | | 20 | □90 | | ±8 | | 100W~400W | | 32 | □120 | 50, 80, 100, 120, 160 | ±6 | 1.0 | 300W∼1.5kW | | 45 | □170 | | ±5 | | 450W~2kW | | 65 | □230 | 80, 100, 120, 160 | ±4 | | 850W~5kW | ^{*1} For details of repeatability and transmission accuracy, refer to CSG-GH performance table on page 78. # HarmonicDrive ** CSF-GH Standard Series (Peak torque 18Nm to 2630Nm) Zero-Backlash | Size | Outline Dimension (mm) | Reduction ratio | Repeatability (arc sec)*1 | Transmission
Accuracy (arc min)*1 | Motor power | |------|------------------------|-----------------------|---------------------------|--------------------------------------|-------------| | 14 | □60 | 50, 80, 100 | ±10 | 1.5 | 30W~100W | | 20 | □90 | | ±8 | | 100W~200W | | 32 | □120 | 50, 80, 100, 120, 160 | ±6 | | 300W~1kW | | 45 | □170 | | ±5 | 1.0 | 450W~2kW | | 65 | □230 | 80, 100, 120, 160 | ±4 | | 850W~5kW | ^{*1} For details of repeatability and transmission accuracy, refer to CSF-GH performance table on page 88. ## Harmonic Planetary® Gear Units # HarmonicPlanetary* HPF Hollow Shaft Series (Peak torque 100Nm to 220Nm) | Size | Outline Dimension (mm) | Hollow shaft diameter | Reduction ratio | Backlash*1 | | |------|------------------------|-----------------------|-----------------|-------------|--| | 25 | Ø136 | Ø25 | 11 | ≤ 3 arc-min | | | 32 | Ø167 | Ø30 | !!! | | | ^{*1} For details of repeatability and transmission accuracy, refer to HPF Hollw shaft performance table on page 105. # HarmonicPlanetary* HPG Input Shaft Series (Peak torque 3.9Nm to 2200Nm) | Size | Outline Dimension | Deducation matic | Backlash*1 | | | |------------|-------------------|------------------------------|-------------|-------------|--| | Size | (mm) | Reduction ratio | Standard | Reduced | | | 11 | □40 | 5, 9, 21, 37, 45 | ≤ 3 arc-min | n/a | |
| 14, 20, 32 | □60, □90, □120 | 2 5 11 15 21 22 45 | ≤ 3 arc-min | ≤ 1 arc-min | | | 50 | □170 | 3, 5, 11, 15, 21, 33, 45 | ≤ 3 arc-min | ≤ 1 arc-min | | | 65 | □230 | 4, 5, 12, 15, 20, 25, 40, 50 | ≤ 3 arc-min | ≤ 1 arc-min | | ^{*1} For details of repeatability and transmission accuracy, refer to HPG Input shaft performance table on page 112. HarmonicPlanetary*& HarmonicDrive* Gearheads www.electromate.com sales@electromate.com # **Operating Principle** # Harmonic Planetary Gearheads #### First-stage A planetary speed reducer with three planet gears. Rotation of the input pinion transfers revolution motion to the first-stage planet gears that mesh with it. The revolution motion is then transferred to the first-stage carrier through the planetary shaft to the second-stage pinion. The direction of rotation is the same as the input pinion. #### Second-stage A planetary speed reducer with three or four planet gears. The second-stage pinion gear is driven by the first-stage carrier and provides the input to the second-stage planet gears. Similar to the case of the first-stage speed reducer, the rotation is then transferred to the second-stage carrier. The internal ring of the cross roller bearing serves as both the second stage carrier and as the gear output flange. The direction of rotation is the same as the input of the first stage. #### **Operating Principle** ## Operating Principle Harmonic Drive® Gearheads # A simple three element construction combined with the unique operating principle puts extremely high reduction ratio capabilities into a very compact and lightweight package. The high performance attributes of this gearing technology including zero backlash, high torque, compact size, and excellent positional accuracy are a direct result of the unique operating principles. #### **Wave Generator** The Wave Generator is a thin raced ball bearing fitted onto an elliptical hub. This serves as a high efficiency torque converter and is generally mounted onto the input or motor shaft. #### Flexspline The Flexspline is a non-rigid, thin cylindrical cup with external teeth on the open end of the cup. The Flexspline fits over the Wave Generator and takes on its elliptical shape. The Flexspline is generally used as the output of the gear. #### Circular Spline The Circular Spline is a rigid ring with internal teeth. It engages the teeth of the Flexspline across the major axis of the Wave Generator ellipse. The Circular Spline has two more teeth than the Flexspline and is generally mounted onto a housing. The Flexspline is slightly smaller in diameter than the Circular Spline and usually has two fewer teeth than the Circular Spline. The elliptical shape of the Wave Generator causes the teeth of the Flexspline to engage the Circular Spline at two opposite regions across the major axis of the ellipse. As the Wave Generator rotates the teeth of the Flexspline engage with the Circular Spline at the major axis. For every 180 degree clockwise movement of the Wave Generator the Flexspline rotates counterclockwise by one tooth in relation to the Circular Soline. Each complete clockwise rotation of the Wave Generator results in the Flexspline moving counter-clockwise by two teeth from its original position relative to the Circular Spline. Normally, this motion is taken out as output. #### **Direction of Rotation** The output rotational direction of CSG/CSF-GH series is reverse of the input rotational direction. Input: Wave Generator (Motor shaft mounting) Fixed: Circular Spline (Casing) Output: Flexspline (Cross roller bearing) #### Tooth behavior and engagement The Harmonic Drive® gear utilizes a unique gear tooth profile for optimized tooth engagement. Unlike an involute tooth profile, this tooth profile ("S tooth") enables about 30% of the total number of teeth to be engaged simultaneously. This technological innovation results in high torque, high torsional stiffness, long life and smooth rotation. www.electromate.com sales@electromate.com #### ■ Harmonic Planetary® Gearheads ## ■ Harmonic Planetary[®] Gearheads #### **■**Harmonic Drive[®] Gearheads | CSF | 1-1 | 20 - 1 | 00 - 0 | GH - FO | - Motor Code | |----------------|------|-----------------------|-----------------|--|--| | ; ; | : | | | | | | Model Name | Size | Reduction Ratio | Model | Output Configuration | Input Configuration | | HarmonicDrive* | 14 | 50, 80, 100 | | FO. Flance autout | - | | | 20 | | | F0: Flange output J2: Shaft output without key | This code represents the motor mounting configuration. Please contact us for a | | CSF | 32 | 50, 80, 100, 120, 160 | GH:
Gearhead | J6: Shaft output with key | unique part number based on the motor | | Standard | 45 | | Cicarricas | and center tapped hole | you are using. | #### ■ Harmonic Planetary® Gear Units 65 80, 100, 120, 160 | HPC | } - | 20 | A - 0 | 5 - BL | .3 - J2 l | J1 - SP | 1 | |--------------------|---|-----------------|-------------------------------|---|---|---|---------| | ! | | | | | | L | | | Model Name | Size | Design Revision | Reduction Ratio | Backlash | Output Configuration | Input Configuration | Options | | HarmonicPlanetary" | 11 B 5, 9, 21, 37, 45 BL1: Backlash less than 1 | | less than 1
arc-min (Sizes | F0: Flange output J20: Shaft output without key J60: Shaft output with key and center tapped hole | U1: Input shaft (with key; no center tapped hole) | None: Standard item SP: Special specification | | | HPG | 14 | | | 14 to 65) | F0: Flange output | U1: Input shaft | | | Input Shaft | 20 | | | BL3: Backlash | J2: Shaft output without key
J6: Shaft output with key and | (with key and center | | | | 32 | Α | 3, 5, 11, 15, 21, 33, 45 | less than 3 | center tapped hole | tapped hole) | | | | 50 | | | arc-min | (J2, J6 for Size 65 is also available) | | | | | 65 | | 4, 5, 12, 15, 20, 25, 40, 50 | | | | | # Application Examples for Harmonic Planetary® Gearheads The Harmonic Planetary® gearheads are especially suitable for a wide range of high technology fields requiring precision motion control such as semiconductor or LCD manufacturing equipment, robot and machine tools. ## **Applications** # **Application Examples for Harmonic Planetary® Gearheads** # **Application Examples for Harmonic Drive® Gearheads** The Harmonic Drive® gearheads series is especially suitable for a wide range of high technology applications requiring precision motion control such as semiconductor or LCD manufacturing equipment, robots and machine tools. ## **Application Examples for HPF Series Gearheads** The HPF Precision Hollow Shaft Planetary Gear is based on the HPG Harmonic Planetary® gearhead. The large coaxial hollow shaft allows cables, shafts, ball screws or lasers to pass directly through the axis of rotation. The HPF also incorporates a large output flange with an integrated Cross-Roller Bearing which can support high axial, radial and moment loads without the need for additional support bearings. # Harmonic Planetary[®] **Gearheads for Servomotors** **HPGP High Torque Series** **HPG Standard Series** **HPG Helical Series** **HPG Right Angle Series** **HPN Value Series** # Harmonic Planetary HPGP / HPG Series Harmonic Drive's expertise in the field of elasto-mechanics of metals is applied to the internal gear of the HPG, HPGP and HPF Series to provide the gearhead with continuous backlash compensation. Planetary gears have simultaneous meshing between the sun gear, planet gears, and the internal ring gear. Most manufacturers try to reduce the backlash by controlling the dimensional precision of the parts. However this causes interference of meshing parts due to dimensional errors, resulting in uneven input torque, vibration, higher noise and premature wear (increase in backlash). Harmonic Planetary® gears use a precision engineered elastic ring gear which compensates for interference between meshing parts. This proprietary Harmonic Planetary® gear design provides smooth and quiet motion and maintains ultra-low backlash for the life of the reducer. - ♦ Low backlash: Less than 3 arc-min (Less than 1 arc-min also available) - ♦ Low gear ratios, 3:1 to 50:1 - **♦** High efficiency - High load capacity by integrating structure with cross roller bearing - High-torque capacity Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 # Harmonic Planetary[®] **HPGP High Torque Series** #### Size 11, 14, 20, 32, 50, 65 # **Peak Torque** 12Nm - 3940Nm #### Reduction Ratio Single Stage: 4:1 to 5:1, Two Stage: 11:1 to 45:1 #### Low Backlash Standard: <3 arc-min Optional: <1 arc-min Low Backlash for Life Innovative ring gear inherently compensates for interference between meshing parts, ensuring consistent, low backlash for ## **High Efficiency** **Up to 95%** #### **High Load Capacity Output Bearing** A Cross Roller bearing is integrated with the output flange to provide high moment stiffness, high load capacity and precise positioning #### Easy mounting to a wide variety of servomotors Quick Connect® coupling # CONTENTS | Rating Table | | 19 | |-------------------------------|-----------|-----| | Performance | | .20 | | Backlash and Torsional | Stiffness | 21 | | Outline Dimensions | 22 | 27 | | Product Sizing & Selecti | on 28 | -29 | 6 Sizes # **Motor Code** I....., | | | | ! | | | | | | | |---------------------|----------------------|-----------------|-----------------------|--|---
--|--|--|--| | Model Name | Size | Design Revision | Reduction Ratio | Backlash | Input Side Bearing | Output Configuration | Input Configuration & Options | | | | HarmonicPlanetary* | 11 | | 5, 21, 37, 45 | BL1: Backlash less
than 1 arc-min
(Sizes 14 to 65) | Z: Input side bearing
with double non-
contact shields
D: Input side bearing
with double contact
seals. (Recommended
for output flange up | F0: Flange output J20: Shaft output without key J60: Shaft output with key and center tapped hole | This code represents the motor mounting configuration. | | | | HPGP
High Torque | 14
20
32
50 | A | 5, 11, 15, 21, 33, 45 | than 3 arc-min | | F0: Flange output J2: Shaft output without key J6: Shaft output with key and center tapped hole (J2, J6 for Size 65 is also available) | Please contact us for a unique part number based on the motor you are using. | | | | | 65 | | 4, 5, 12, 15, 20, 25 | | orientation.) | 00 is also available) | | | | #### Gearhead Construction Figure 018-1 # Rating Table Table 019-1 | | | Rated | Rated | Limit for Average | Limit for Repeated | Limit for Momentary | Max. Average | Max. Input | |------|-------|--------------|--------------|-------------------------------------|--------------------|---------------------|----------------|------------| | Size | Ratio | Torque L10*1 | Torque L50*1 | Limit for Average
Load Torque *2 | Peak Torque *3 | Torque *4 | Input Speed *5 | Speed *6 | | | | Nm | Nm | Nm | Nm | Nm | rpm | rpm | | | 5 | 3.4 | 6.6 | 6.7 | 12 | | | | | 11 | 21 | 4.6 | 8 | | | 20 | 3000 | 10000 | | l '' | 37 | 4.6 | 8 | 8 | 13 | 20 | 3000 | 10000 | | | 45 | 4.6 | 8 | | | | | | | | 5 | 7.8 | 15 | 17 | 39 | 56 | | | | | 11 | 10 | 20 | | 38 | | | | | 14 | 15 | 12 | 20 | | | | 3000 | 6000 | | | 21 | 12 | 20 | 20 | 39 | 63 | 3000 | 0000 | | | 33 | 13 | 20 | | 39 | | | | | | 45 | 13 | 20 | | | | | | | | 5 | 21 | 47 | 47 | 133 | | | | | | 11 | 26 | 59 | 60 | 156 | | | | | 20 | 15 | 32 | 70 | 70 | 142 | 217 | 3000 | 6000 | | | 21 | 33 | 73 | 73 | 172 | 217 | 3000 | 0000 | | | 33 | 39 | 72 | 80 | 156 | | | | | | 45 | 39 | 80 | 80 | 142 | | | | | | 5 | 87 | 150 | 200 | 400 | | | | | | 11 | 104 | 160 | 226 | 440 | | | | | 32 | 15 | 122 | 220 | 226 | 400 | 650 | 3000 | 6000 | | 02 | 21 | 130 | 226 | 220 | 400 | 000 | 3000 | | | | 33 | 143 | 200 | 266 | 440 | | | | | | 45 | 143 | 266 | 266 | 400 | | | | | | 5 | 226 | 380 | 452 | 1460 | 1850 | | | | | 11 | 266 | 450 | 702 | 1700 | | | | | 50 | 15 | 306 | 460 | 532 | 1500 | | 2000 | 4500 | | 30 | 21 | 346 | 490 | 600 | 1460 | 2180 | 2000 | 1000 | | | 33 | 359 | 600 | 000 | 1400 | | | | | | 45 | 359 | 640 | 665 | 1360 | | | | | | 4 | 665 | 1150 | 1200 | 3520 | | | 2500 | | | 5 | 705 | 1190 | 1330 | 3790 | | | | | 65 | 12 | 798 | 1330 | 1000 | 0130 | 4500 | 2000 | | | 00 | 15 | 971 | 1460 | 1460 | 3940 | 4500 | 2000 | 3000 | | | 20 | 1060 | 1520 | 1730 | 3790 | | | | | | 25 | 1130 | 1900 | 2000 | 3840 | | | | ^{*1:} Rated torque is based on life of 20,000 hours at max average input speed. *2: Average load torque calculated based on the application motion profile must not exceed values shown in the table. See p. 29 *3: The limit for torque during start and stop cycles. *4: The limit for torque during emergency stops or from external shock loads. Always operate below this value. ^{*5:} Max value of average input rotational speed during operation. ^{*6:} Maximum instantaneous input speed. ## Performance Table | | | | | | | Table 020- | |------|-------|--------------------------|------------------|--------------------|-----------------------|---------------------------| | Size | Ratio | Transmission Accuracy *1 | Repeatability *2 | Starting torque *3 | Backdriving torque *4 | No-load running torque *5 | | Size | Hatio | arc min | arc sec | Ncm | Nm | Ncm | | | 5 | | | 4.0 | 0.20 | 5.0 | | ١ | 21 | _ | | 2.9 | 0.60 | 1.3 | | 11 | 37 | 5 | ±30 | 1.6 | 0.60 | 0.90 | | | 45 | | | 1.4 | 0.64 | 0.80 | | | 5 | | | 8.6 | 0.43 | 9.8 | | | 11 | | | 8.0 | 0.90 | 4.9 | | | 15 | | | 7.4 | 1.1 | 2.9 | | 14 | 21 | 4 | ±20 | 5.2 | 1.1 | 2.9 | | | 33 | | | 3.3 | 1.1 | 2.0 | | | 45 | | | 2.4 | 1.1 | 2.0 | | | 5 | | | 19 | 0.93 | 28 | | | 11 | | | 15 | 1.7 | 15 | | l | 15 | _ | | 12 | 1.8 | 11 | | 20 | 21 | 4 | ±15 | 9.3 | 2.0 | 8.8 | | | 33 | | | 6.4 | 2.1 | 5.9 | | | 45 | | | 4.7 | 2.1 | 4.9 | | | 5 | | | 33 | 1.7 | 73 | | | 11 | | | 27 | 2.9 | 38 | | | 15 | | | 25 | 3.7 | 29 | | 32 | 21 | 4 | ±15 | 22 | 4.7 | 24 | | | 33 | | | 15 | 4.8 | 14 | | | 45 | | | 11 | 5.1 | 13 | | | 5 | | | 80 | 4.0 | 130 | | | 11 | | | 45 | 5.0 | 60 | | l | 15 | _ | | 40 | 6.0 | 47 | | 50 | 21 | 3 | ±15 | 36 | 7.6 | 40 | | | 33 | | | 24 | 7.8 | 24 | | | 45 | | | 20 | 8.9 | 20 | | | 4 | | | 288 | 12 | 420 | | | 5 | | | 240 | 12 | 360 | | | 12 | | 125 | 15 | 190 | | | 65 | 15 | 3 | ±15 | 110 | 17 | 160 | | | 20 | | | 95 | 19 | 130 | | | 25 | | | 84 | 21 | 110 | | | | | | | | | *1: Transmission accuracy values represent the difference between the theoretical angle and the actual angle of output for any given input. The values shown in the table are maximum values. > :Input angle : Actual output angle : Gear reduction ratio Figure 020-1 *2: The repeatability is measured by moving to a given theoretical position seven times, each time approaching from the same direction. The actual position of the output shaft is measured each time and repeatability is calculated as the $^{1}/_{2}$ of the maximum difference of the seven data points. Measured values are indicated in angles (arc-sec) prefixed with "±". The values in the table are maximum values. Figure 020-2 - *3: Starting torque is the torque value applied to the input side at which the output first starts to rotate. The values in the table are maximum values, and are based on Z option shielded input bearing unloaded. - *4: Backdriving torque is the torque value applied to the output side at which the input first starts to rotate. The values in the table are maximum values, and are based on Z option shielded input bearing Note: Never rely on these values as a margin in a system that must hold an external load. A brake must be used where back driving is not permissible. *5: No-load running torque is the torque required at the input to operate the gearhead at a given speed under a no-load condition. The values in the table are average values, and are based on Z option shielded input bearing unloaded at 25° C at 3,000 rpm. ## **Backlash and Torsional Stiffness** ## ■ Gearhead - Standard backlash (BL3) | (≤ | ≤ 3 are | c-min) | Table 021-1 | | | | |------|----------------------|----------|---|----------------------------|--|--| | Size | Ratio | Backlash | Torsion angle in one direction at TR X 0.15 D | Torsional stiffness
A/B | | | | 0.20 | | arc min | arc min | Nm/arc min | | | | | 5 | | 2.5 | | | | | 11 | 21
37
45 | 3 | 3.0 | .64 | | | | | 5 | | 2.2 | | | | | 14 | 11
15 | 3 | | 1.37 | | | | | 21
33
45 | 3 | 2.7 | | | | | г | 5 | | 1.5 | | | | | 20 | 11
15 | 3 | | 5.39 | | | | | 21
33
45 | 3 | 2.0 | | | | | | 5 | 1.3 | | | | | | | 11 | | 1.0 | | | | | 32 | 15
21
33 | 3 | 1.7 | 21.56 | | | | | 45 | | | | | | | | 5
11 | | 1.3 | | | | | 50 | 15
21
33
45 | 3 | 1.7 | 137.2 | | | | | 4 5 | | 1.3 | | | | | 65 | 12
15
20
25 | 3 | 1.7 | 372.4 | | | #### ■ Gearhead - Reduced backlash (BL1) (≤ 1 arc-min) Table 021-2 | Size | Ratio | Backlash | Torsion angle in one direction at TR X 0.15 D | Torsional stiffness
A/B | | | | | |------|----------|----------|---|----------------------------|--|--|--|--| | | | arc min | arc min | Nm/arc min | | | | | | 11 | | | not available | | | | | | | | 5 | | 1.1 | | | | | | | | 11 | | | | | | | | | 14 | 15 | 1 | | 1.372 | | | | | | 14 | 21 | • | 1.7 | 1.072 | | | | | | | 33 | | | | | | | | | | 45 | | 2.2 | | | | | | | | 5 | | 0.6 | | | | | | | | 11 | | | | | | | | | 20 | 15
21 | 1 | 1.1 | 5.39 | | | | | | | 33 | | 1.1 | | | | | | | | 45 | | | | | | | | | | 5 | | 0.5 | | | | | | | | 11 | | 0.0 | | | | | | | | 15 | | 1.0 | | | | | | | 32 | 21 | 1 | | 21.56 | | | | | | | 33 | | | | | | | | | | 45 | | | | | | | | | | 5 | | 0.5 | | | | | | | | 11 | | | | | | | | | 50 | 15 | 1 | | 137.2 | | | | | | 30 | 21 | • | 1.0 | 10.12 | | | | | | | 33
45 | | | | | | | | | | 45 | | | | | | | | | | 5 | | 0.5 | | | | | | | | 12 | | | | | | | | | 65 | 15 | 1 | | 372.4 | | | | | | | 20 | | 1.0 | | | | | | | | 25 | | | | | | | | #### Torsional stiffness curve With the input of the gear locked in place, a torque applied to the output flange will torsionally deflect in proportion to the applied torque. We generate a torsional stiffness curve by slowly applying torque to the output in the following sequence: (1) Clockwise torque to TR, (2) Return to Zero, (3) Counter-Clockwise torque to -TR, (4) Return to Zero and (5) again Clockwise torque to TR. A loop of (1) > (2) > (3) > (4) > (5) will be drawn as in Fig. 021-1. The torsional stiffness in the region from "0.15 x T_R " to " T_R " is is calculated using the average value of this slope. The torsional stiffness in the region from "zero torque" to "0.15 x $\ensuremath{\text{TR}}$ " is lower. This is caused by the small amount of backlash plus engagement of the mating parts and loading of the planet gears under the initial torque applied. #### Calculation of total torsion angle The method to calculate the total torsion angle (average value) in one direction when a load is applied from a no-load state. #### Backlash (Hysteresis loss) The vertical distance between points (2) & (4) in Fig. 021-1 is called a hysteresis loss. The hysteresis loss between "Clockwise load torque Trand "Counter Clockwise load torque -
Trans is defined as the backlash of the HPGP series. Backlash of the HPGP series is less than 3 arc-min (1 arc-min is also available). # **HPGP-11 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 022-1 ## **Dimension Table** (Unit: mm) Table 022-1 | | Flange
Type | Coupling | A (H7) | | B C | | F (H7) | | G | | H *1 | H *1 Mass (kg | | | |-----------------|----------------|----------|--------|------|------|------|--------|------|------|------|------|---------------|-------|--------| | | | Type | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | Shaft | Flange | | Single
Stage | 1 | 1 | 20 | 55 | 4 | 25 | 75 | 5 | 8 | 18.5 | 29 | 54.5 | 0.34 | 0.30 | | Two
Stage | 1 | 1 | 20 | 55 | 4 | 25 | 75 | 5 | 8 | 18.5 | 29 | 63.5 | 0.40 | 0.36 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 11 May vary depending on motor interface dimensions. 12 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 13 Tapped hole for motor mounting screw. #### Moment of Inertia (10⁻⁴ kgm²) Table 022-2 | HPGP 11 | Ratio Coupling | 5 | 21 | 37 | 45 | |-------------|----------------|-------|-------|--------|--------| | I III GF II | 1 | 0.006 | 0.004 | 0.0027 | 0.0025 | # **HPGP-14 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 023-1 # **Dimension Table** (Unit: mm) Table 023-1 | | Flange | Coupling | A (H7) | | В | С | | F (H7) | | G | | H*1 | Mass (kg) *2 | | |---|--------|----------|--------|-------|------|------|--------|--------|------|---------|---------|---------|--------------|--------| | l | Type | Туре | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | Shaft | Flange | | | 1 | 1 | 30 | 55 | 7 | 35 | 75 | 6.0 | 8 | 20.5 *1 | 32.5 | 85 | 1.07 | 0.95 | | | 2 | 2 | 35 | 75 *¹ | 7 | 40 | 100 *1 | 9.0 | 14.2 | 17.5 | 33.5 *1 | 85 | 1.12 | 1.00 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not Heter to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Pleas suitable for your particular motor. 11 May vary depending on motor interface dimensions. 12 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 13 Tapped hole for motor mounting screw. #### **Moment of Inertia** (10⁻⁴ kgm²) Table 023-2 | | Ratio Coupling | 5 | 11 | 15 | 21 | 33 | 45 | |---------|----------------|-------|-------|-------|------|-------|-------| | HPGP 14 | 1 | - | 0.06 | 0.058 | 0.05 | 0.044 | 0.044 | | | 2 | 0.204 | 0.197 | 0.195 | - | - | - | # **HPGP-20 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 024-1 # **Dimension Table** (Unit: mm) Table 024-1 | Flange | Coupling | A (H7) | | В | С | | F (H7) | | G | | H *1 | | Mass (kg) *2 | | |--------|----------|--------|-------|------|------|--------|--------|------|---------|------|---------|-----------|--------------|--------| | Туре | Туре | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | -33 Ratio | Shaft | Flange | | 1 | 1 | 50 | 68 | 8 | 55 | 84 | 7.0 | 19.6 | 22.0 *1 | 35.5 | 98.0 | 103.0 | 3.0 | 2.6 | | 2 | 1 | 80 | 95 | 10 | 85 | 125 | 7.0 | 19.6 | 29.0 *1 | 42.5 | 105.0 | 110.0 | 3.2 | 2.8 | | 3 | 1 | 30 | 45 | 10 | 35 | 50 | 6.0 | 7.8 | 20.0 *1 | 31.0 | 93.5 | 98.5 | 2.5 | 2.1 | | 4 | 1 | 38 | 75 *¹ | 10 | 45 | 100 *1 | 7.0 | 19.6 | 24.0 | 42.5 | 105.0 | 110.0 | 3.2 | 2.8 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. *1 May vary depending on motor interface dimensions. - 12 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 13 Tapped hole for motor mounting screw. # **Moment of Inertia** (10⁻⁴ kgm²) Table 024-2 | HPGP 20 | Ratio | 5 | 11 | 15 | 21 | 33 | 45 | |-----------|-------|------|------|------|-----|------|------| | 111 01 20 | 1 | 0.69 | 0.62 | 0.58 | 0.5 | 0.45 | 0.45 | # **HPGP-32 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 025-1 (Unit: mm) # **Dimension Table** (Linit: mm) Table 025-1 | | | | | | | | | | | | | (OI | 111. | Table 025-1 | |--------|-----------|--------|--------|------|------|--------|------|------|---------|---------|---------|-----------|--------------|-------------| | Flange | Coupling | A (H7) | | ВС | | 3 | F (| (H7) | (| à | H | *1 | Mass (kg) *2 | | | Type | Туре Туре | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | -33 Ratio | Shaft | Flange | | 2 | 1 | 70 | 100 | 7 | 80 | 112 | 10.0 | 28.6 | 29.0 *1 | 56.5 | 139 | 144 | 8.0 | 6.6 | | 4 | 1 | 55 | 95 *1 | 10 | 60 | 135 | 10.0 | 28.6 | 40.0 | 67.5 *1 | 150 | 155 | 8.1 | 6.7 | | 5 | 1 | 55 | 175 *1 | 10 | 65 | 225 *1 | 10.0 | 28.6 | 49.0 | 76.5 *1 | 159 | 164 | 9.7 | 8.3 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not - suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. #### **Moment of Inertia** (10⁻⁴ kgm²) Table 025-2 | | | | | | | | 5 , | |---------|----------------|-----|-----|-----|----|-----|-----| | HPGP 32 | Ratio Coupling | 5 | 11 | 15 | 21 | 33 | 45 | | HPGF 32 | 1 | 3.9 | 3.7 | 3.5 | 3 | 2.8 | 2.8 | # **HPGP-50 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. # **Dimension Table** (Unit: mm) Table 026-1 | Flange | Coupling | Α (| H7) | B *1 | | 3 | F (| H7) | | à | H*1 | Mass | s (kg) *2 | |--------|----------|------|--------|------|------|--------|------|------|------|-------|---------|-------|-----------| | Type | Туре | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | Shaft | Flange | | 1 | 1 | 65 | 175 *1 | 15 | 75 | 235 *1 | 19.0 | 41.0 | 45.0 | 81 *1 | 202 | 20.2 | 17.2 | | 2 | 2 | 80 | 130 | 10 | 90 | 160 | 19.0 | 41.0 | 30.5 | 55 | 176 | 19.0 | 16.0 | | 3 | 1 | 65 | 175 *1 | 15 | 75 | 235 *1 | 19.0 | 41.0 | 45.0 | 81 *1 | 202 | 27.5 | 24.5 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. #### Moment of Inertia (10⁻⁴ kgm²) Table 026-2 | HPGP 50 | Ratio
Coupling | 5 | 11 | 15 | 21 | 33 | 45 | |---------|-------------------|----|-----|-----|-----|-----|-----| | | 1 | 12 | 9.4 | 9.1 | 7 | 6.1 | 5.9 | | | 2 | - | - | 8.3 | 5.8 | 4.9 | 4.7 | # **HPGP-65 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 027-1 (Unit: mm) 4-D*3 # **Dimension Table** (Unit: mm) Table 027-1 | | Flange | Coupling | Α (| H7) | В | (|) | F | (H7) | G | *1 | H*1 | Mass | (kg) *2 | |-----------------|--------|----------|------|---------|------|------|---------|------|------|------|-------|---------|-------|---------| | | Type | Туре | Min. | Max. *1 | Max. | Min. | Max. *1 | Min. | Max. | Min. | Max. | Typical | Shaft | Flange | | Single
Stage | 2 | 2 | 130 | 245 | 15 | 140 | 290 | 35.0 | 44 | 65.0 | 126.5 | 246.5 | 48.0 | 38.0 | | | 1 | 1 | 65 | 175 | 15 | 75 | 225 | 24.0 | 36.5 | 52.0 | 85.0 | 288 | 52.0 | 42.0 | | Two
Stage | 2 | 2 | 130 | 245 | 15 | 140 | 290 | 35.0 | 44 | 65.0 | 126.5 | 314.5 | 52.0 | 42.0 | | | 3 | 1 | 65 | 175 | 15 | 75 | 225 | 24.0 | 36.5 | 52.0 | 85.0 | 288 | 52.0 | 42.0 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. #### **Moment of Inertia** (10⁻⁴ kgm²) Table 027-2 | HPGP 65 | Ratio | 4 | 5 | 12 | 15 | 20 | 25 | |---------|-------|----|----|----|----|----|----| | | 1 | - | - | 28 | 27 | 15 | 15 | | | 2 | 92 | 77 | 70 | 69 | 57 | 56 | ## **Sizing & Selection** To fully utilize the excellent performance of the HPGP HarmonicPlanetary® gearheads, check your operating conditions and, using the flowchart, select the appropriate size gear for your application. Check your operating conditions against the following application motion profile and select a suitable size based on the flowchart shown on the right. Also check the life and static safety coefficient of the cross roller bearing. #### Flowchart for selecting a size Please use the flowchart shown below for selecting a size. Operating conditions must not exceed the performance ratings #### Application motion profile Review the application motion profile. Check the specifications shown in the figure below. ####
Obtain the value of each application motion profile. #### Normal operation pattern Starting (acceleration) T1, t1, n1 Steady operation (constant velocity) T2, t2, n2 Stopping (deceleration) T3, t3, n3 Dwell T4, t4, n4 #### Maximum rotational speed Max. output rotational speed no $max \ge n1$ to nn Max. input rotational speed ni max $n1 \times R$ to $nn \times R$ (Restricted by motors) R: Reduction ratio #### **Emergency stop torque** When impact torque is applied T Required life L₅₀ = L (hours) Calculate the average output speed based on the application motion profile: no av (rpm) $$no av = \frac{|n_1| \cdot t_1 + |n_2 \cdot t_2 + \dots + |n_n| \cdot t_n}{t_1 + t_2 + \dots + t_n}$$ Make a preliminary model selection with the following condition: $Tav \le Average load torque (Refer to rating table)$. Determine the reduction ratio (R) based on the maximum output rotational speed (no *max*) and maximum input rotational speed (ni *max*). (A limit is placed on ni max by motors.) Calculate the maximum input speed (ni max) from the maximum output speed (no max) and the reduction ratio (R). ni max=no max • R Calculate the average input speed (ni av) from the average output speed (no av) and the reduction ratio (R): ni av = no av·R \leq Max. average input speed (nr). Check whether the maximum input speed is equal to or less than the values in the rating table. ni $max \leqq maximum input speed (rpm)$ Check whether T1 and T3 are within peak torques (Nm) on start and stop in the rating table. Check whether $T_{\rm S}$ is less than the momentary max. torque (Nm) value from the ratings. Calculate the life and check whether it meets the specification requirement requirement. Tr: Rated Torque nr: Max. average input speed The model number is confirmed # Review the operation conditions, size and reduction ratio. to the Caution note below. #### Caution If any of the following conditions exist, please consider selecting the next larger speed reducer, reduce the operating loads or reduce the operating speed. If this cannot be done, please contact Harmonic Drive LLC. Exercise caution especially when the duty cycle is close to continuous operation. In Actual average load torque (Tav) > Permissible maximum value of average load torque or Actual average load torque (Tav) > Permissible maximum value of average load torque or ii) Actual average input rotational speed (ni av) > Permissible average input rotational speed (nr). Gearhead housing temperature > 70°C. Load torque Tn (Nm) Time tn (sec) Output rotational speed nn (rpm) Normal operation pattern Starting (acceleration) $T_1 = 70 \text{ Nm},$ Steady operation (constant velocity) $T_2 = 18 \text{ Nm}$, Stopping (deceleration) T₃ = 35 Nm, $t_3 = 0.4 \text{ sec}, \quad n_3 = 60 \text{ rpm}$ $T_4 = 0 Nm$ $t_4 = 5 \text{ sec}, \quad n_4 = 0 \text{ rpm}$ Maximum rotational speed Max. output rotational speed Max. input rotational speed no max = 120 rpmni *max* = 5,000 rpm (Restricted by motors) Emergency stop torque When impact torque is applied Ts = 180 Nm Required life $L_{50} = 30,000 \text{ (hours)}$ Calculate the average load torque applied to the output side based on the application motion profile: Tav (Nm). Calculate the average output speed based on the application motion profile: no av (rpm) Make a preliminary model selection with the following conditions. $Tav = 30.2 \text{ Nm} \le 72 \text{ Nm}$. (HPGP-20A-33 is tentatively selected based on the average load torque (see the rating table) of size 20 and reduction ratio of 33.) $t_1 = 0.3 \text{ sec}, \quad n_1 = 60 \text{ rpm}$ $t_2 = 3 \text{ sec}, \quad n_2 = 120 \text{ rpm}$ Determine a reduction ratio (R) from the maximum output speed (no max) and maximum input speed (ni max). 120 rpm Calculate the maximum input speed (ni max) from the maximum output speed (no max) and reduction ratio (R): ni max = 120 rpm • 33 = 3,960 rpm Calculate the average input speed (ni av) from the average output speed (no av) and reduction ratio (R): ni av = 46.2 rpm•33= 1,525 rpm \leqq Max average input speed of size 20 3,000 rpm Check whether the maximum input speed is equal to or less than the values specified in the rating table ni $max = 3,960 \text{ rpm} \le 5,000 \text{ rpm}$ (maximum input speed of size 20) Check whether T_1 and T_3 are within peak torques (Nm) on start and stop in the rating table. $T_1 = 70 \text{ Nm} \leqq 156 \text{ Nm}$ (Limit for repeated peak torque, size 20) $T_3 = 35 \text{ Nm} \leqq 156 \text{ Nm}$ (Limit for repeated peak torque, size 20) Check whether Ts is less than limit for momentary torque (Nm) in the rating table. Ts = 180 Nm \le 217 Nm (momentary max. torque of size 20) Calculate life and check whether the value meets the requirement. L₅₀ = 20,000 · $$\left(\frac{72 \text{ Nm}}{30.2 \text{ Nm}}\right)^{10/3}$$ · $\left(\frac{3,000 \text{ rpm}}{1,525 \text{ rpm}}\right)$ =712,251 (hours) ≥ 30,000 (hours) The selection of model number HPGP-20A-33 is confirmed from the above calculations. to the Caution note at the bottom of page 28. Refer # Harmonic Planetary[®] **HPG Standard Series** #### Size 11, 14, 20, 32, 50, 65 ## **Peak torque** 5Nm - 3200Nm #### **Reduction ratio** Single Stage: 3:1 to 9:1, Two Stage: 11:1 to 50:1 #### Low Backlash Standard: <3 arc-min Optional: <1 arc-min Low Backlash for Life Innovative ring gear inherently compensates for interference between meshing parts, ensuring consistent, low backlash for the life of the gearhead. #### **High efficiency** **Up to 95%** #### **High Load Capacity Output Bearing** A Cross Roller bearing is integrated with the output flange to provide high moment stiffness, high load capacity and precise positioning accuracy. #### Easy mounting to a wide variety of servomotors Quick Connect® coupling Product Sizing & Selection 40-41 # HPG - 20 A - 05 - BL3 - Z - F0 #### **Motor Code** | | : | | : | | :
 | i | | |--------------------|----------------------------|-----------------|--|---|---|--|--| | Model Name | Size | Design Revision | Reduction Ratio | Backlash | Input Side Bearing | Output Configuration | Input Configuration & Options | | HarmonicPlanetary* | 11 | В | 5, 9, 21, 37, 45 | BL1: Backlash less
than 1 arc-min | Z: Input side
bearing with double
non-contact shields | F0: Flange output
J20: Shaft output without key
J60: Shaft output with key and
center tapped hole | This code represents the motor mounting configuration. | | HPG
Standard | 14
20
32
50
65 | A | 3, 5, 11, 15, 21, 33, 45
4, 5, 12, 15, 20, 25, 40, 50 | (Sizes 14 to 65) BL3: Backlash less than 3 arc-min | D: Input side bearing with
double contact seals.
(Recommended for output
flange up orientation.) | F0: Flange output J2: Shaft output without key J6: Shaft output with key and center tapped hole (J2, J6 for Size 65 is also available) | Please contact us for a unique part number based on the motor you are using. | Gearhead Construction Figure 030-1 Shielded bearing Mounting pilot Rubber cap Output flange Quick Connect® coupling Input rotational direction Output rotational direction Output side oil seal Cross roller bearing Motor mounting flange Mounting bolt hole #### **HPG Standard Gearhead Series** # Rating Table Table 031-1 | Size | Ratio | Rated
Torque L10 *1 | Rated
Torque L50 *1 | Limit for Average
Load Torque *2 | Limit for Repeated
Peak Torque *3 | Limit for Momentary
Torque *4 | Max. Average
Input Speed *5 | Max. Input
Speed * ⁶ | |------|-------|------------------------|------------------------|-------------------------------------|--------------------------------------|----------------------------------|--------------------------------|------------------------------------| | | | Nm | Nm | Nm | Nm | Nm | rpm | rpm | | | 5 | 2.5 | 5 | 5 | 10 | | | | | | 9 | 2.5 | 3.9 | 3.9 | 5 | | | | | 11 | 21 | 3.4 | 6 | 6 | | 20 | 3000 | 10000 | | | 37 | 3.4 | 6 | 6 | 10 | | | | | | 45 | 3.4 | 6 | 6 | | | | | | | 3 | 2.9 | 6.4 | 6.4 | 15 | 37 | | 5000 | | | 5 | 5.9 | 13 | 13 | | 56 | | | | | 11 | 7.8 | 15 | 15 | | | | | | 14 | 15 | 9 | 15 | 15 | 30 | | 3000 | 6000 | | | 21 | 8.8 | 15 | 15 | | 63 | 5555 | | | | 33 | 10 | 15 | 15 | | | | | | | 45 | 10 | 15 | 15 | | | | | | | 3 | 8.8 | 17 | 19 | 64 | 124 | | 4000 | | | 5 | 16 | 35 | 35 | 100 | | | | | | 11 | 20 | 45 | 45 | 117 | | | | | 20 | 15 | 24 | 53 | 53 | 107 | 217 | 3000 | 6000 | | | 21 | 25 | 55 | 55 | | = | | | | | 33 | 29 | 60 | 60 | 117 | | | | | | 45 | 29 | 60 | 60 | 106 | | | | | | 3 | 31 | 60 | 71 | 225 | 507 | | 3600 | | | 5 | 66 | 150 | 150 | 300 | | | | | | 11 | 88 | 170 | 170 | 330 | | | | | 32 | 15 | 92 | 170 | 170 | 300 | 650 | 3000 | 6000 | | | 21 | 98 | 170 | 170 | | | | | | | 33 | 108 | 200 | 200 | 330 | | | | | | 45 | 108 | 200 | 200 | 300 | | | 2000 | | | 3 | 97 | 160 | 195 | 850 | 1200 | | 3000 | | | 5 | 170 | 290 | 340 | 1110 | 1850 | | | | | 11 | 200 | 340 | 400 | 1200 | | 0000 | | | 50 | 15 | 230 | 400 | 450 | 1250 | 0400 | 2000 | 4500 | | | 21 | 260 | 450 | 500 | 1140 | 2180 | | | | | 33 | 270 | 470 | 500 | 1100 | | | | | | 45 | 270 | 500 | 500 | 1130 | | | 2500 | | | 4 | 500 | 870 | 900 | 2890 | | | 2300 | | | 5 | 530 | 900 | 1000 | 3100 | | | | | | 12 | 600 | 1020 | 1100 | 3300 | | | | | 0.5 | 15 | 730 | 1260 | 1300 | 3200
3100 | 4500 | 2000 | 3000 | | 65 | 20 | 800 | 1370 | 1500 | 3200 | | | 3000 | | | 25 | 850 | 1470 | 1500 | | | | | | | 40 | 640 | 1320 | 1300 | 1900
2200 | | | | | | 50 | 750 | 1650 | 1500 | 2200 | | | | Toll Free Fax: (877) SERV099 ^{*1:} Rated torque is based on life of 20,000 hours at
max average input speed. *2: Average load torque calculated based on the application motion profile must not exceed values shown in the table. See p. 40. *3: The limit for torque during start and stop cycles. ^{*4:} The limit for torque during emergency stops or from external shock loads. Always operate below this value. ^{*5:} Max value of average input rotational speed during operation. ^{*6:} Maximum instantaneous input speed. # Performance Table | | | Accuracy *1 | Repeatability *2 | Starting torque *3 | Backdriving torque *4 | No-load running torque *5 | |------|--------------|-------------|------------------|--------------------|-----------------------|---------------------------| | Size | Ratio | arc min | arc sec | Ncm | Nm | Ncm | | | 5 | alo min | 10000 | 4.0 | 0.20 | 5.0 | | | 9 | | | 3.7 | 0.33 | 2.5 | | 11 | 21 | 5 | ±30 | 2.9 | 0.60 | 1.3 | | '' | 37 | 3 | ±30 | 1.6 | 0.60 | 0.90 | | | 45 | | | 1.4 | 0.64 | 0.80 | | | 3 | | | 14 | 0.43 | 21 | | | 5 | | | 8.6 | 0.43 | 9.8 | | | 11 | | | 8.0 | 0.90 | 4.9 | | 14 | 15 | 4 | ±20 | 7.4 | 1.1 | 2.9 | | 14 | 21 | 4 | ±20 | 5.2 | 1.1 | 2.9 | | | 33 | | | 3.3 | 1.1 | 2.0 | | | 45 | | | 2.4 | 1.1 | 2.0 | | | 3 | | | 31 | 0.93 | 50 | | | 5 | | | 19 | 0.93 | 28 | | | 11 | | | 15 | 1.7 | 15 | | 20 | 15 | 4 | 45 | 12 | 1.8 | 11 | | 20 | 21
33 | ±15 | 9.3 | 2.0 | 8.8 | | | | | | | 6.4 | 2.1 | 5.9 | | | 45 | | | 4.7 | 2.1 | 4.9 | | | 45 | | | 56 | 1.7 | 135 | | | | | | 33 | 1.7 | 73 | | | 3
5
11 | | | 27 | 2.9 | 38 | | | 15 | _ | 45 | 25 | 3.7 | 29 | | 32 | 21 | 4 | ±15 | 22 | 4.7 | 29 | | | 33 | | | 15 | 4.7 | 14 | | | 45 | | | 11 | 5.1 | 13 | | | 3 | | | 134 | 4.0 | 250 | | | 5 | | | 80 | 4.0 | | | | 11 | | | 45 | 5.0 | 130
60 | | | 15 | | 4.5 | 45 | 6.0 | 47 | | 50 | 21 | 3 | ±15 | 36 | 7.6 | 40 | | | 33 | | | 24 | 7.8 | 24 | | | 45 | | | 24 | 7.8
8.9 | 24 | | | 45 | | | 288 | 12 | 420 | | | 5 | | | 240 | 12 | 360 | | | 12 | | | 125 | 15 | 190 | | | | | | | 15 | | | 65 | 15 | 3 | ±15 | 110 | | 160 | | | 20 | | | 95 | 19 | 130 | | | 25 | | | 84 | 21 | 110 | | | 40 | | | 75 | 30 | 76 | | | 50 | | | 70 | 35 | 64 | *1: Transmission accuracy values represent the difference between the theoretical angle and the actual angle of output for any given input. The values in the table are maximum values. Figure 032-1 θer : Accuracy θ₁ : Input angle θ₂ : Actual output angle R : Gear reduction ratio $$\theta$$ er = θ_2 $-\frac{\theta_1}{R}$ *2: The repeatability is measured by moving to a given theoretical position seven times, each time approaching from the same direction. The actual position of the output shaft is measured each time and repeatability is calculated as the 1/2 of the maximum difference of the seven data points. Measured values are indicated in angles (arc-sec) prefixed with "±". The values in the table are maximum values. Figure 032-2 - *3: Starting torque is the torque value applied to the input side at which the output first starts to rotate. The values in the table are maximum values, and are based on Z option shielded input bearing unloaded. - *4: Backdriving torque is the torque value applied to the output side at which the input first starts to rotate. The values in the table are maximum values, and are based on Z option shielded input bearing unloaded. Note: Never rely on these values as a margin in a system that must hold an external load. A brake must be used where back driving is not permissible. *5: No-load running torque is the torque required at the input to operate the gearhead at a given speed under a no-load condition. The values in the table are average values, and are based on Z option shielded input bearing unloaded at 25° C at 3,000 rpm. ## **Backlash and Torsional Stiffness** 2.5 3.0 2.2 2.7 1.5 2.0 1.3 1.7 1.3 1.7 1.3 #### ■ Gearhead - Standard backlash (BL3) (≤ 3 arc-min) 3 3 3 3 21 37 15 45 11 45 45 11 15 21 50 33 45 20 15 21 33 32 65 20 | Table 033-1 | | |------------------------------------|------| | onal stiffness
A/B
n/arc min | Size | | .637 | 11 | | 1.37 | 14 | | 5.39 | 20 | | 21.56 | 32 | | 137.2 | 50 | | | | #### Gearhead - Reduced backlash (BL1) (≤ 1 arc-min) Table 033-2 | Size | Ratio | Backlash | Torsion angle in one direction at TR X 0.15 D | Torsional stiffness
A/B | | | |------|----------------------------------|----------|---|----------------------------|--|--| | 3126 | Hano | arc min | arc min | Nm/arc min | | | | 11 | | | not available | | | | | | 3
5 | | 1.1 | | | | | 14 | 11
15
21
33
45 | 1 | 1.7 | 1.37 | | | | | 3
5 | | 0.6 | | | | | 20 | 11
15
21
33
45 | 1 | 1.1 | 5.39 | | | | | 3
5 | | 0.5 | | | | | 32 | 11
15
21
33
45 | 1 | 1.0 | 21.56 | | | | | 3
5 | | 0.5 | | | | | 50 | 11
15
21
33
45 | 1 | 1.0 | 137.2 | | | | | 4
5 | | 0.5 | | | | | 65 | 12
15
20
25
40
50 | 1 | 1.0 | 372.4 | | | #### Torsional stiffness curve With the input of the gear locked in place, a torque applied to the output flange will torsionally deflect in proportion to the applied torque. We generate a torsional stiffness curve by slowly applying torque to the output in the following sequence: (1) Clockwise torque to TR, (2) Return to Zero, (3) Counter-Clockwise torque to -TR, (4) Return to Zero and (5) again Clockwise torque to TR. A loop of (1) > (2) > (3) > (4) > (5) will be drawn as in Fig. 033-1. The torsional stiffness in the region from "0.15 x TR" to "TR" is calculated using the average value of this slope. The torsional stiffness in the region from "zero torque" to "0.15 x TR" is lower. This is caused by the small amount of backlash plus engagement of the mating parts and loading of the planet gears under the initial torque applied. #### Calculation of total torsion angle The method to calculate the total torsion angle (average value) in one direction when a load is applied from a no-load state. Formula 033-1 Calculation formula Total torsion angle Torsion angle in one direction See Fig. 033-1, Table 033-1, Table 033-2 D at output torque x 0.15 torque Output torque x 0.15 torque (=TRX0.15) See Fig. 033-1 Tu See Fig. 033-1, Table 033-1 to 2 Torsional stiffness A/B #### Backlash (Hysteresis loss) The vertical distance between points (2) & (4) in Fig. 033-1 is called a hysteresis loss. The hysteresis loss between "Clockwise load torque TR" and "Counter Clockwise load torque -TR" is defined as the backlash of the HPG series. Backlash of the HPG series is less than 3 arc-min (1 arc-min or less for a reduced backlash option, size 14-65). # **HPG-11 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 034-1 ## **Dimension Table** (Unit: mm) Table 034-1 | | Flange Cou | lange Coupling | Α(| H7) | B *1 | (| 3 | F | (H7) | G | *1 | H* | Mass | (kg) *2 | |-----------------|------------|----------------|------|---------|------|------|------|------|------|------|------|---------|-------|---------| | | Flange | | Min. | Max. *1 | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | Shaft | Flange | | Single
Stage | 1 | 1 | 20 | 55 | 4 | 25 | 75 | 5 | 8 | 18.5 | 29 | 54.5 | 0.34 | 0.30 | | Two
Stage | 1 | 1 | 20 | 55 | 4 | 25 | 75 | 5 | 8 | 18.5 | 29 | 63.5 | 0.40 | 0.36 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not - suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. #### **Moment of Inertia** (10⁻⁴ kgm²) Table 034-2 | HPG 11 | Ratio Coupling | 5 | 9 | 21 | 37 | 45 | |--------|----------------|-------|-------|-------|--------|--------| | | 1 | 0.005 | 0.003 | 0.004 | 0.0027 | 0.0025 | ## **HPG Standard Gearhead Series** # **HPG-14 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. (Unit: mm) Hexagon socket head bolt 4-D*3 Rubber cap □60 Ø30 C0.5 C0.5 040 В 4-Ø5.5 6-M4x7 2.5 37 5 h9 28 25 # **Dimension Table** ე შ (Unit: mm) Table 035-1 | Flange Coupl | Caualina | A (H7) | | B *1 | С | | F (H7) | | G *1 | | H*1 | Mass (kg) *2 | | |--------------|----------|--------|-------|------|------|--------|--------|------|------|------|---------|--------------|--------| | | Coupling | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | Shaft | Flange | | 1 | 1 | 30 | 55 | 7 | 35 | 75 | 6.0 | 7.8 | 20.5 | 32.5 | 85 | 1.04 | 0.92 | | 2 | 2 | 35 | 75 *¹ | 7 | 40 | 100 *1 | 9.0 | 14.2 | 24 | 33.5 | 85 | 1.09 | .097 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. C0.5 R0.4 #### **Moment of Inertia** (10⁻⁴ kgm²) Table 035-2 (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. | HPG 14 | Ratio
Coupling | 3 | 5 | 11 | 15 | 21 | 33 | 45 | |--------|-------------------|------|-------|-------|-------|-------|-------|-------| | | 1 | - | - | 0.06 | 0.058 | 0.05 | 0.044 | 0.044 | | | 2 | 0.26 | 0.207 | 0.197 | 0.180 | 0.171 | 0.167 | 0.165 | www.electromate.com sales@electromate.com # **HPG-20 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 036-1 # **Dimension Table**
(Unit: mm) Table 036-1 | Flange | Coupling | A (H7) | | B *1 | С | | F (H7) | | G *1 | | H*1 | Mass (kg) *2 | | |--------|----------|--------|-------|------|------|--------|--------|------|------|------|---------|--------------|--------| | | | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | Shaft | Flange | | 1 | 1 | 50 | 68 | 8 | 55 | 84 | 7.0 | 19.6 | 22.0 | 35.5 | 98.0 | 3.1 | 2.7 | | 2 | 1 | 80 | 95 | 10 | 85 | 125 | 7.0 | 19.6 | 29.0 | 42.5 | 105.0 | 3.3 | 2.9 | | 3 | 3 | 30 | 45 | 10 | 35 | 50 | 6.0 | 7.8 | 20.0 | 31.0 | 93.5 | 2.6 | 2.2 | | 4 | 1 | 40 | 75 *¹ | 10 | 45 | 100 *1 | 7.0 | 19.6 | 29.0 | 42.5 | 105.0 | 3.3 | 2.9 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. #### Moment of Inertia (10⁻⁴ kgm²) Table 036-2 | HPG 20 | Ratio Coupling | 3 | 5 | 11 | 15 | 21 | 33 | 45 | |--------|----------------|-----|-----|-----|------|------|-------|-------| | | 1 | 1.1 | 0.7 | 0.6 | 0.56 | 0.49 | 0.45 | 0.45 | | | 3 | • | - | - | - | 0.11 | 0.065 | 0.063 | # **HPG Standard Gearhead Series** # **HPG-32 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 037-1 # **Dimension Table** (Unit: mm) Table 037-1 | FI | 0 | Α (| H7) | B*1 C | | F (| H7) | G | *1 | H*1 | Mass | (kg) *2 | | |--------|----------|------|--------|-------|------|--------|------|------|------|------|---------|---------|--------| | Flange | Coupling | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | Shaft | Flange | | 1 | 1 | 110 | 124 | 10 | 120 | 155 | 10.0 | 28.6 | 30.0 | 57.5 | 140 | 7.8 | 6.4 | | 2 | 1 | 70 | 100 | 7 | 80 | 112 | 10.0 | 28.6 | 29.0 | 56.5 | 139 | 7.8 | 6.4 | | 4 | 1 | 55 | 95 *1 | 10 | 60 | 135 | 10.0 | 28.6 | 40.0 | 67.5 | 150 | 7.9 | 6.5 | | 5 | 1 | 55 | 175 *1 | 10 | 65 | 225 *1 | 10.0 | 28.6 | 49.0 | 76.5 | 159 | 9.5 | 8.1 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not - suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. #### **Moment of Inertia** (10⁻⁴ kgm²) Table 037-2 | | | | | | | | (| ·9··· / | |----------|----------------|-----|-----|-----|-----|----|-----|---------| | HPG 32 | Ratio Coupling | 3 | 5 | 11 | 15 | 21 | 33 | 45 | | 111 0 02 | 1 | 5.6 | 3.9 | 3.4 | 3.2 | 3 | 2.8 | 2.8 | # **HPG-50 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 038-1 # **Dimension Table** (Unit: mm) Table 038-1 | Flames | Carralina | Α (| H7) | B *1 | (| C | F (| H7) | G | *1 | H*1 | Mass | s (kg) *2 | |--------|-----------|------|--------|------|------|----------|------|------|------|------|---------|-------|-----------| | Flange | Coupling | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | Shaft | Flange | | 1 | 1 | 65 | 175 *1 | 15 | 75 | 235 *1 | 19.0 | 41.0 | 45.0 | 81.0 | 202 | 20.2 | 17.2 | | 2 | 2 | 80 | 130 | 10 | 90 | 160 | 19.0 | 41.0 | 30.5 | 55.0 | 176 | 19.0 | 16.0 | | 3 | 1 | 65 | 175 *1 | 15 | 75 | 235 *1 | 19.0 | 41.0 | 45.0 | 81.0 | 202 | 27.5 | 24.5 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not - suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. Use flange type 3 for motors weighing over 65 kg. 3 Tapped hole for motor mounting screw. #### **Moment of Inertia** (10⁻⁴ kgm²) Table 038-2 | | Ratio
Coupling | 4 | 5 | 11 | 15 | 21 | 33 | 45 | |--------|-------------------|----|----|-----|-----|-----|-----|-----| | HPG 50 | 1 | 23 | 12 | 8.8 | 8.8 | 7 | 6 | 5.9 | | | 2 | - | - | • | 7.7 | 5.8 | 4.8 | 4.7 | # **HPG Standard Gearhead Series** # **HPG-65 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 039-1 (Unit: mm) 4-D*3 # **Dimension Table** (Unit: mm) Table 039- | | | | | | | | | | | | | (UI | nt: mm) | Table 039-1 | |-----------------|--------|----------|------|---------|------|------|------|------|------|------|-------|---------|---------|-------------| | | El | 0 | Α (| H7) | В | (|) | F (| (H7) | G | *1 | H *1 | Mass | (kg) *1 | | | Flange | Coupling | Min. | Max. *1 | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | Shaft | Flange | | Single
Stage | 2 | 2 | 130 | 245 | 15 | 140 | 290 | 35.0 | 43.9 | 65.0 | 126.5 | 246.5 | 48.0 | 38.0 | | | 1 | 1 | 65 | 175 | 15 | 75 | 225 | 24.0 | 36.5 | 52.0 | 85.0 | 288 | 52.0 | 42.0 | | Two
Stage | 2 | 2 | 130 | 245 | 15 | 140 | 290 | 35.0 | 43.9 | 65.0 | 126.5 | 314.5 | 52.0 | 42.0 | | | 3 | 1 | 65 | 175 | 15 | 75 | 225 | 24.0 | 36.5 | 52.0 | 85.0 | 288 | 52.0 | 42.0 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. solitable to your periodian motor. 11 May vary depending on motor interface dimensions. 12 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 13 Tapped hole for motor mounting screw. #### **Moment of Inertia** (10⁻⁴ kgm²) Table 039-2 | | Ratio | 4 | 5 | 12 | 15 | 20 | 25 | 40 | 50 | |--------|-------|----|----|----|----|----|----|----|----| | HPG 65 | 1 | - | - | 25 | 24 | 15 | 14 | 9 | 9 | | | 2 | 89 | 74 | 67 | 65 | 53 | 53 | - | - | #### **HPG Standard Gearhead Series** # Sizing & Selection To fully utilize the excellent performance of the HPG HarmonicPlanetary® gearheads, check your operating conditions and, using the flowchart, select the appropriate size gear for your application. Check your operating conditions against the following application motion profile and select a suitable size based on the flowchart shown on the right. Also check the life and static safety coefficient of the cross roller bearing and input side main bearing (input shaft type only). #### Flowchart for selecting a size Please use the flowchart shown below for selecting a size. Operating conditions must not exceed the performance #### Application motion profile Review the application motion profile. Check the specifications shown in the figure below. #### Obtain the value of each application motion profile Load torque T₁ to T_n (Nm) Time t1 to tn (sec) Output rotational speed n1 to nn (rpm) Normal operation pattern Starting (acceleration) T1, t1, n1 Steady operation (constant velocity) T2. t2. n2 Stopping (deceleration) T3, t3, n3 Dwell T4, t4, n4 Maximum rotational speed Max. output rotational speed no $max \ge n1$ to nnMax. input rotational speed ni max n1×R to nn×R (Restricted by motors) R: Reduction ratio Emergency stop torque When impact torque is applied Required life L₅₀ = L (hours) If any of the following conditions exist, please consider selecting the next larger speed reducer, reduce the operating loads or reduce the operating speed. If this cannot be done, please contact Harmonic Drive LLC. Exercise caution especially when the duty cycle is close to continuous operation. i) Actual average load torque (Tav) > Permissible maximum value of average load torque or ii) Actual average input rotational speed (ni av) > Permissible average input rotational speed (nr), iii) Gearhead housing temperature > 70°C #### Example of size selection Load torque Tn (Nm) Time tn (sec) Output rotational speed nn (rpm) Normal operation pattern Starting (acceleration) $T_1 = 70 \text{ Nm}$, Steady operation (constant velocity) $T_2 = 18 \text{ Nm},$ Stopping (deceleration) T₃ = 35 Nm, $T_4 = 0 Nm$, $t_1 = 0.3 \text{ sec}, \quad n_1 = 60 \text{ rpm}$ $t_2 = 3 \text{ sec}, \quad n_2 = 120 \text{ rpm}$ $t_3 = 0.4 \text{ sec}, \quad n_3 = 60 \text{ rpm}$ $t_4 = 5 \text{ sec}, \quad n_4 = 0 \text{ rpm}$ Maximum rotational speed Max. output rotational speed Max. input rotational speed no max = 120 rpmni max = 5,000 rpm(Restricted by motors) **Emergency stop torque** When impact torque is applied $T_s = 180 \text{ Nm}$ Required life $L_{50} = 30,000 \text{ (hours)}$ Calculate the average load torque applied to the output side based on the application motion profile: Tav (Nm). Calculate the average output speed based on the application motion profile: no av (rpm) Make a preliminary model selection with the following conditions. T $av = 30.2 \text{ Nm} \le 70 \text{ Nm}$. (HPG-20A-33 is tentatively selected based on the average load torque (see the rating table) of size 20 and reduction ratio of 33.) Determine a reduction ratio (R) from the maximum output speed (no max) and maximum input speed (ni max). Calculate the maximum input speed (ni max) from the maximum output speed (no max) and reduction ratio (R): ni max = 120 rpm • 33 = 3,960 rpm Calculate the average input speed (ni av) from the average output speed (no av) and reduction ratio (R): ni av = 46.2 rpm•33= 1,525 rpm \leqq Max average input speed of size 20 3,000 rpm Check whether the maximum input speed is equal to or less than the values specified in the rating table ni $max = 3,960 \text{ rpm} \le 5,000 \text{ rpm}$ (maximum input speed of size 20)
Check whether T_1 and T_3 are within peak torques (Nm) on start and stop in the rating table. $T_1 = 70$ Nm $\leqq 117$ Nm (Limit for repeated peak torque, size 20) $T_3 = 35$ Nm $\leqq 117$ Nm (Limit for repeated peak torque, size 20) Check whether Ts is less than limit for momentary torque (Nm) in the rating table. Ts = 180 Nm \leqq 217 Nm (momentary max. torque of size 20) Calculate life and check whether the calculated life meets the requirement. L₅₀ = 20,000 · $$\left(\frac{70 \text{ Nm}}{30.2 \text{ Nm}}\right)^{10/3}$$ · $\left(\frac{3,000 \text{ rpm}}{1,525 \text{ rpm}}\right)$ =648,413 (hours) ≥ 30,000 (hours) The selection of model number HPG-20A-33 is confirmed from the above calculations. to the Caution note at the bottom of page 40. Review the operation conditions, size and reduction ratio. # Harmonic Planetary® **HPG Helical Series** # Size 11, 14, 20, 32 #### Peak torque 5Nm - 400Nm **Reduction ratio** New Two-Stage Ratios Coming Soon! 3:1 to 10:1 #### Low backlash Standard: <3 arc-min Optional: <1 arc-min **Low Backlash for Life** Innovative ring gear inherently compensates for interference between meshing parts, ensuring consistent, low backlash for the life of the gearhead. # **High efficiency** **Up to 92%** ### **High Load Capacity Output Bearing** A Cross Roller bearing is integrated with the output flange to provide high moment stiffness, high load capacity and precise positioning accuracy. #### Easy mounting to a wide variety of servomotors Quick Connect® coupling **Gearhead Construction** # CONTENTS Performance...... 44 Backlash and Torsional Stiffness 45 Outline Dimensions 46-49 Product Sizing & Selection 50-51 Figure 042-1 # **Motor Code** | <u> </u> | | | | <u> </u> | | : | <u>:</u> | |--------------------|----------------|-----------------|-------------------------|---|--|--|---| | Model Name | Size | Design Revision | Reduction Ratio | Backlash | Input Side Bearing | Output Configuration | Input Configuration & Options | | HarmonicPlanetary* | 11 | | 4, 5, 6, 7, 8, 9, 10 | BL1: Backlash
less than 1
arc-min (size
14 to 32 only) | Z: Input side
bearing with double
non-contact shields | F0: Flange output
J20: Shaft output without key
J60: Shaft output with key and
center tapped hole | This code represents the motor mounting configuration. Please contact us for a unique | | HPG
Helical | 14
20
32 | R | 3, 4, 5, 6, 7, 8, 9, 10 | BL3: Backlash
less than 3
arc-min | D: Input side bearing
with double contact
seals. (Recommended
for output flange up
orientation.) | F0: Flange output J2: Shaft output without key J6: Shaft output with key and center tapped hole | part number based on the 'motor you are using. | # Shielded bearing Mounting pilot Rubber cap Output flange Quick Connect® coupling Input rotational direction Output rotational direction # **Rating Table** Table 043-1 | Size | Ratio | Rated
Torque L10 *1 | Rated
Torque L50 *1 | Limit for Average
Load Torque *2 | Limit for
Repeated Peak
Torque *³ | Limit for
Momentary
Torque *4 | Max.
Average
Input Speed ⁵⁵ | Max.
Input Speed *6 | | |------|-------|------------------------|------------------------|-------------------------------------|---|-------------------------------------|-----------------------------------|------------------------|--| | | | Nm | Nm | Nm | Nm | Nm | rpm | rpm | | | | 4 | 2.8 | 4.0 | 6.3 | 10 | | | | | | | 5 | 2.9 | 5.0 | 6.5 | 10 | | | | | | | 6 | 2.9 | 5.0 | 6.5 | 10 | | | | | | 11 | 7 | 3.1 | 5.0 | 7.0 | 9.0 | 20 | 3000 | 10000 | | | | 8 | 3.1 | 5.0 | 7.0 | 7.0 | | | | | | | 9 | 3.1 | 5.0 | 6.0 | 6.0 | | | | | | | 10 | 3.4 | 5.0 | 5.0 | 5.0 | | | | | | | 3 | 4.0 | 7.0 | 9.0 | 20 | 37 | | 5000 | | | | 4 | 7.0 | 11 | 16 | 30 | | | | | | | 5 | 7.2 | 11 | 16 | 30 | | | | | | | 6 | 7.3 | 11 | 16 | 30 | | 2000 | | | | 14 | 7 | 7.8 | 12 | 18 | 26 | 56 | 3000 | 6000 | | | | 8 | 7.8 | 12 | 18 | 20 | | | | | | | 9 | 7.9 | 12 | 17 | 17 | | | | | | | 10 | 8.5 | 13 | 15 | 15 | | | | | | | 3 | 11 | 17 | 25 | 90 | 124 | | 4000 | | | | 4 | 23 | 36 | 51 | 133 | | | | | | | 5 | 23 | 38 | 53 | 133 | | | | | | | 6 | 23 | 37 | 53 | 126 | | 0000 | | | | 20 | 7 | 25 | 40 | 56 | 108 | 217 | 3000 | 6000 | | | | 8 | 25 | 40 | 56 | 84 | | | | | | | 9 | 25 | 40 | 57 | 73 | | | | | | | 10 | 27 | 44 | 61 | 65 | | | | | | | 3 | 50 | 60 | 110 | 290 | 507 | | 3600 | | | | 4 | 77 | 120 | 170 | 400 | | | | | | | 5 | 80 | 120 | 180 | 400 | | | | | | 20 | 6 | 80 | 130 | 180 | 390 | | 2000 | | | | 32 | 7 | 85 | 138 | 190 | 330 | 650 | 3000 | 6000 | | | | 8 | 85 | 138 | 190 | 260 | | | | | | | 9 | 86 | 139 | 190 | 220 | | | | | | | 10 | 92 | 149 | 200 | 200 | | | | | ^{*1:} Rated torque is based on life of 20,000 hours at max average input speed. *2: Average load torque calculated based on the application motion profile must not exceed values shown in the table. See p. 50. *3: The limit for torque during start and stop cycles. *4: The limit for torque during emergency stops or from external shock loads. Always operate below this value. *5: Max value of average input rotational speed during operation. *6: Maximum instantaneous input speed. # **Performance Table** Table 044- | Size | Detie | Transmission Accuracy *1 | Repeatability *2 | Starting Torque *3 | Backdriving Torque *4 | No-Load Running Torque *5 | |------|-------|--------------------------|------------------|--------------------|-----------------------|---------------------------| | Size | Ratio | arc min | arc sec | Ncm | Nm | Ncm | | | 4 | | | 4.7 | 0.19 | 6.8 | | | 5 | | | 4.1 | 0.21 | 5.4 | | | 6 | | | 3.6 | 0.22 | 4.5 | | 11 | 7 | 5 | ±20 | 3.3 | 0.23 | 3.9 | | | 8 | | | 3.0 | 0.24 | 3.4 | | | 9 | | | 2.8 | 0.25 | 3.0 | | | 10 | | | 2.6 | 0.26 | 2.7 | | | | | | 13 | 0.38 | 22 | | | 4 | | | 11 | 0.45 | 17 | | | 5 | | | 10 | 0.51 | 13 | | 14 | 6 | 4 | ±15 | 9.5 | 0.57 | 11 | | 14 | 7 | 4 | 113 | 9.0 | 0.63 | 9.4 | | | 8 | | | 8.5 | 0.68 | 8.3 | | | 9 | | | 8.1 | 0.73 | 7.3 | | | 10 | | | 7.8 | 0.78 | 6.6 | | | 3 | | | 31 | 0.93 | 50 | | | 4 | | | 25 | 1.0 | 38 | | | 5 | | | 22 | 1.1 | 30 | | 20 | 6 | 4 | ±10 | 20 | 1.2 | 25 | | | 7 | 7 | 110 | 18 | 1.3 | 21 | | | 8 | | | 17 | 1.4 | 19 | | | 9 | | | 17 | 1.5 | 17 | | | 10 | | | 16 | 1.6 | 15 | | | 3 | | | 56 | 1.7 | 135 | | | 4 | | | 52 | 2.1 | 101 | | | 5 | | | 49 | 2.5 | 81 | | 32 | 6 | 4 | ±10 | 47 | 2.8 | 68 | | 52 | 7 | 7 | 110 | 45 | 3.2 | 58 | | | 8 | | | 44 | 3.5 | 51 | | | 9 | | | 43 | 3.9 | 45 | | | 10 | | | 42 | 4.2 | 41 | *1. Transmission accuracy values represent the difference between the theoretical angle and the actual angle of output for any given input. The values shown are maximum values. θer : Transmission accuracy θ₁ : Input angle $\begin{array}{ll} \theta_2 & \text{: Actual output angle} \\ R & \text{: Gear reduction ratio} \end{array}$ θ er = $\theta_2 - \frac{\theta_1}{R}$ Figure 044-2 - *2. The repeatability is measured by moving to a given theoretical position seven times, each time approaching from the same direction. The actual position of the output shaft is measured each time and repeatability is calculated as the 1/2 of the maximum difference of the seven data points. Measured values are indicated in angles (arc-sec) prefixed with "±". The values in the table are maximum values. See Figure 044-2. - Starting torque is the torque value applied to the input side at which the output first starts to rotate. The values in the table are maximum values. and are based on Z option shielded input bearing unloaded. - *4: Backdriving torque is the torque value applied to the output side at which the input first starts to rotate. The values in the table are maximum values, and are based on Z option shielded input bearing unloaded. Note: Never rely on these values as a margin in a system that must hold an external load. A brake must be used where back driving is not permissible. 5: No-load running torque is the torque required at the input to operate the gear-head at a given speed under a no-load condition. The values in the table are average values, and are based on Z option shielded input bearing unloaded at 25° C at 3,000 rpm. # **Backlash and Torsional Stiffness** #### ■ Gearhead - Standard backlash (BL3) (≤ 3 arc-min) Table 045-1 # ■ Gearhead - Reduced backlash (BL1) (≤ 1 arc-min) Table 045-2 | Size | Ratio | Backlash | Torsion angle in one direction at T _R x 0.15 D | Torsional stiffness
A/B | Size | Ratio | Backlash | Torsion angle in one
direction at
T _R x 0.15 D | Torsional stiffness
A/B | |------|--------|----------|---|----------------------------|------|-------|----------|---|----------------------------| | | | arc min | arc min | Nm/arc min | | | arc min | arc min | Nm/arc min | | | 4 | | | | | 4 | | | | | | 5 | | | | | 5 | | | | | | 6 | | | | | 6 | | | | | 11 | 7 | 3 | 2.5 | 0.64 | 11 | 7 | N/A | N/A | N/A | | | 8 | | | | | 8 | | | | | | 9 | | | | | 9 | | | | | | 10 | | | | | 10 | | | | | | 3 | | | | | 3 | | | | | | 4 | | | | | 4 | | | | | | 5 | | | | | 5 | | | | | 14 | 6 | 3 | 2.2 | 1.37 | 14 | 6 | 1 | 1.1 | 1.37 | | | 7 | | | | | 7 | | | | | | 8 | | | | | 8 | | | | | | 9 | | | | | 9 | | | | | | 10 | | | | | 10 | | | | | | 3 | | | | | 3 | | | | | | 4 | | | | | 5 | | | | | | 5 | | | | | 6 | | | | | 20 | 6
7 | 3 | 1.5 | 5.39 | 20 | 7 | 1 | 0.6 | 5.39 | | | 8 | | | | | 8 | | | | | | 9 | | | | | 9 | | | | | | 10 | | | | | 10 | | | | | | 3 | | | | | 3 | | | | | | 4 | | | | | 4
 | | | | | 5 | | | | | 5 | | | | | | 6 | | | | | 6 | | | | | 32 | 7 | 3 | 1.3 | 21.56 | 32 | 7 | 1 | 0.5 | 21.56 | | | 8 | | | | | 8 | 1 | | | | | 9 | | | | | 9 | | | | | | 10 | | | | | 10 | 1 | | | | | | | | | | | | | | #### **Torsional stiffness curve** With the input of the gear locked in place, a torque applied to the output flange will torsionally deflect in proportion to the applied torque. We generate a torsional stiffness curve by slowly applying torque to the output in the following sequence: (1) Clockwise torque to TR, (2) Return to Zero, (3) Counter-Clockwise torque to -TR, (4) Return to Zero and (5) again Clockwise torque to TR. A loop of (1) > (2) > (3) > (4) > (5) will be drawn as in Fig. 045-1. The torsional stiffness in the region from "0.15 x TR" to "TR" is is calculated using the average value of this slope. The torsional stiffness in the region from "zero torque" to "0.15 x T_R" is lower. This is caused by the small amount of backlash plus engagement of the mating parts and loading of the planet gears under the initial torque applied. #### Calculation of total torsion angle The method to calculate the total torsion angle (average value) in one direction when when a load is applied from a load in a no-load state. Formula 045-1 #### **Backlash (Hysteresis loss)** The vertical distance between points (2) & (4) in Fig. 045-1 is called a hysteresis loss. The hysteresis loss between "Clockwise load torque T_R" and "Counter Clockwise load torque - T_R" is defined as the backlash of the HPG-helical series. Backlash of the HPG-helical series is less than 3 arc-min (1 arc-min is also available for sizes 14-32). # **HPG-11R Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. # **Dimension Table** (Unit: mm) Table 046-1 | Flange | Coupling | A (I | H7) | B ⁻¹ | (| | F (| H7) | G | | Htt | Mass | (kg) *2 | |---------|----------|------|-----|-----------------|-----|-----|-----|-----|------|-----|---------|-------|---------| | Flarige | Coupling | Min | Max | Max | Min | Max | Min | Max | Min | Max | Typical | Shaft | Flange | | 1 | 1 | 20 | 55 | 4 | 25 | 75 | 5 | 8 | 18.5 | 29 | 54.5 | 0.34 | 0.30 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. *1 May vary depending on motor interface dimensions. - Tay as you have a support of the input shaft coupling. The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. Tapped hole for motor mounting screw. # **Moment of Inertia** (10⁻⁴ kgm²) Table 046-2 | HPG-11R | Ratio
Coupling | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |------------|-------------------|--------|--------|--------|--------|--------|--------|--------| | TII O-TIIC | 1 | 0.0156 | 0.0125 | 0.0108 | 0.0099 | 0.0092 | 0.0088 | 0.0085 | # **HPG-14R Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 047-1 Unit mm 4-D*3 Rubber cap Hexagon socket head bolt 60 ØF H7 ØA H7 Ø55.5 8 В 4-Ø5.5 6-M4x7 5 h9 28 C0.5 R0.4 (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. # **Dimension Table** (Unit: mm) Table 047-1 | Flange | Coupling | Α(| H7) | В | (| | F (H7) | | G | | H"1 | Mass (kg) *2 | | |--------|-----------------|------------|-----|-----|-----|-----|--------|-----|--------|------|---------|--------------|--------| | Flange | Flange Coupling | upiing Min | | Max | Min | Max | Min | Max | Min | Max | Typical | Shaft | Flange | | 1 | 1 | 30 | 55 | 7 | 35 | 75 | 5.8 | 8 | 20.5*1 | 32.5 | 85 | 1.07 | 0.95 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. - 11 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. # **Moment of Inertia** (10⁻⁴ kgm²) Table 047-2 | HPG-14R | Ratio
Coupling | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |----------|-------------------|-------|-------|-------|-------|-------|-------|-------|-------| | 11FG-14K | 1 | 0.118 | 0.083 | 0.069 | 0.069 | 0.063 | 0.059 | 0.056 | 0.054 | # **HPG-20R Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 048-1 Unit mm □ 90 Rubber cap Hexagon socket head bolt 4-D*3 **6** H Я Ø84 Ø59 В Ç0.5 6-M6x10 27 10 46 8 h9 36 Ø25 h7 Cí R0.4 M6x12 (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. # **Dimension Table** | Flange | Coupling | A (l | H7) | В | С | | F (H7) | | G | | H ^{r1} | Mass (kg) '2 | | |---------|----------|------|------|-----|-----|-------|--------|------|------------------|------|-----------------|--------------|--------| | rialige | Coupling | Min | Max | Max | Min | Max | Min | Max | Min | Max | Typical | Shaft | Flange | | 1 | 1 | 50 | 68 | 8 | 55 | 84 | 8.8 | 19.6 | 22 ^{*1} | 39 | 98 | 3 | 2.6 | | 2 | 1 | 80 | 95 | 10 | 85 | 125 | 8.8 | 19.6 | 29 ^{*1} | 46 | 105 | 3.2 | 2.8 | | 4 | 2 | 38 | 75*1 | 10 | 45 | 100*1 | 8.8 | 19.6 | 24 | 46*1 | 105 | 3.2 | 2.8 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. - *1 May vary depending on motor interface dimensions. *2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. - *3 Tapped hole for motor mounting screw. #### **Moment of Inertia** (10⁻⁴ kgm²) Table 048-2 | | Ratio
Coupling | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |---------|-------------------|-------|-------|-------|-------|-------|-------|-------|-------| | HPG-20R | 1 | 1.005 | 0.775 | 0.665 | 0.609 | 0.572 | 0.549 | 0.534 | 0.525 | | | 2 | 0.992 | 0.762 | 0.652 | 0.597 | 0.560 | 0.537 | 0.522 | 0.513 | # **HPG-32R Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. # **Dimension Table** | | | | | | | | | | | | | (Unit: mm) | Table 049-1 | |--------|----------|------|-------------------|-----|-----|-------------------|--------|-----|------------------|--------------------|-----------------|------------|-------------| | Flores | Counting | A (I | H7) | В | (| 0 | F (H7) | | | | H ^{rt} | Mass | (kg) *2 | | Flange | Coupling | Min | Max | Max | Min | Max | Min | Max | Min | Max | Typical | Shaft | Flange | | 1 | 1 | 70 | 81 | 7 | 80 | 112 | 15.8 | 26 | 29 ^{*1} | 56.5 | 139 | 8 | 6.6 | | 4 | 1 | 55 | 95 ^{*1} | 10 | 60 | 135 ^{*1} | 15.8 | 26 | 40 | 67.5 ^{*1} | 150 | 8.1 | 6.7 | | 5 | 1 | 55 | 175 ^{*1} | 10 | 65 | 225*1 | 15.8 | 26 | 49 | 76.5 ^{*1} | 159 | 9.7 | 8.3 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown - above are not suitable for your particular motor. *1 May vary depending on motor interface dimensions. - The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. Tapped hole for motor mounting screw. # **Moment of Inertia** (10⁻⁴ kgm²) Table 049-2 | HPG-32R | Ratio
Coupling | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |----------|-------------------|------|------|------|------|------|------|------|------| | TIFG-32K | 1 | 5.45 | 3.95 | 3.44 | 3.23 | 3.09 | 3.01 | 2.94 | 2.90 | # Sizing & Selection To fully utilize the excellent performance of the HPG HarmonicPlanetary® gearheads, check your operating conditions and, using the flowchart, select the appropriate size gear for your application. Check your operating conditions against the following application motion profile and select a suitable size based on the flowchart shown on the right. Also check the life and static safety coefficient of the cross roller bearing. #### Flowchart for selecting a size Please use the flowchart shown below for selecting a size. Operating conditions must not exceed the performance #### **Application motion profile** Review the application motion profile. Check the specifications shown in the figure below. #### Obtain the value of each application motion profile Load torque T₁ to T_n (Nm) Time t1 to tn (sec) Output rotational speed n1 to nn (rpm) #### Normal operation pattern Starting (acceleration) Steady operation (constant velocity) T2, t2, n2 Stopping (deceleration) T3, t3, n3 Dwell T4, t4, n4 #### Maximum rotational speed no $max \ge n1$ to nnMax. output rotational speed Max. input rotational speed ni max n1×R to nn×R (Restricted by motors) R: Reduction ratio #### **Emergency stop torque** When impact torque is applied #### Required life L₅₀ = L (hours) Refer to the Caution note below. Check whether the maximum input speed is equal to or less than If any of the following conditions exist, please consider selecting the next larger speed reducer, reduce the operating loads or reduce the operating speed. If this cannot be done, please contact Harmonic Drive LLC. Exercise caution especially when the duty cycle is close to i) Actual average load torque (Tav) > Permissible maximum value of average load torque or ii) Actual average input rotational speed (ni av) > Permissible average input rotational speed (nr), iii) Gearhead housing temperature > 70°C #### Example
of size selection Load torque Tn (Nm) tn (sec) Output rotational speed nn (rpm) #### Normal operation pattern Starting (acceleration) $T_1 = 70 \text{ Nm}$, $t_1 = 0.3 \text{ sec}$, $n_1 = 60 \text{ rpm}$ Steady operation (constant velocity) $T_2 = 18 \text{ Nm},$ $t_2 = 3 \text{ sec}, \quad n_2 = 120 \text{ rpm}$ Stopping (deceleration) $T_3 = 35 \text{ Nm}$, $t_3 = 0.4 \text{ sec}$, $n_3 = 60 \text{ rpm}$ $t_4 = 5 \text{ sec}, \quad n_4 = 0 \text{ rpm}$ $T_4 = 0 Nm$ Maximum rotational speed Max. output rotational speed no max = 120 rpmMax. input rotational speed ni max = 5,000 rpm(Restricted by motors) **Emergency stop torque** When impact torque is applied $T_s = 180 \text{ Nm}$ Required life $L_{50} = 30,000 \text{ (hours)}$ Calculate the average load torque applied to the output side based on the application motion profile: Tav (Nm). $-\sqrt{\frac{|60\text{rpm}|\cdot 0.3\text{sec}\cdot|70\text{Nm}|^{10/3}}{|60\text{rpm}|\cdot 0.3\text{sec}+120\text{rpm}|\cdot 3\text{sec}\cdot|18\text{Nm}|^{10/3}}+|60\text{rpm}|\cdot 0.4\text{sec}\cdot|35\text{Nm}|^{10/3}}}$ Calculate the average output speed based on the application motion profile: no av (rpm) $|\: 60 rpm| \cdot 0.3 sec + |120 rpm| \cdot 3 sec + |\: 60 rpm| \cdot 0.4 sec + |0 rpm| \cdot 5 sec$ 0.3sec+3sec+0.4sec+5sec Make a preliminary model selection with the following conditions. Tav = $30.2 \text{ Nm} \le 70 \text{ Nm}$. (**HPG-20R-7** is tentatively selected based on the average load torque (see the rating table) of size 20 and reduction ratio of 7.) Determine a reduction ratio (R) from the maximum output speed (no max) and maximum input speed (ni max). ______ = 41.7 ≧ 7 120 rpm Calculate the maximum input speed (ni max) from the maximum output speed (no max) and reduction ratio (R): ni max = 120 rpm • 7 = 840 rpm Calculate the average input speed (ni av) from the average output speed (no av) and reduction ratio (R): ni av = 46.2 rpm+7= 323 rpm \leqq Max average input speed of size 20 3,000 rpm Check whether the maximum input speed is equal to or less than the values specified in the rating table. ni $max = 840 \text{ rpm} \le 5,000 \text{ rpm}$ (maximum input speed of size 20) Check whether T_1 and T_3 are within peak torques (Nm) on start and stop in the rating table. $T_1=70$ Nm $\leqq 108$ Nm (Limit for repeated peak torque, size 20) $T_3=35$ Nm $\leqq 108$ Nm (Limit for repeated peak torque, size 20) Check whether Ts is less than limit for momentary torque (Nm) in the rating table. Ts = 180 Nm ≤ 217 Nm (momentary max. torque of size 20) Calculate life and check whether the calculated life meets the requirement. L₅₀ = 20,000 · $$\left(\frac{40 \text{ Nm}}{30.2 \text{ Nm}}\right)^{10/3} \cdot \left(\frac{3,000 \text{ rpm}}{1,525 \text{ rpm}}\right) = 100,398 \text{ (hours)} \ge 30,000 \text{ (hours)}$$ The selection of model number HPG-20R-7 is confirmed from the above calculations. Review the operation conditions, size and reduction ratio. # Harmonic Planetary[®] **HPG Right Angle Series** # Size 32, 50, 65 # **Peak torque** 150Nm - 2200Nm #### **Reduction ratio** Single Stage: 5:1, Two Stage: 11:1 to 50:1 #### Low backlash #### <3 arc-min Low Backlash for Life Innovative ring gear inherently compensates for interference between meshing parts, ensuring consistent, low backlash for the life of the gearhead. # **High efficiency** **Up to 92%** # **High Load Capacity Output Bearing** A Cross Roller bearing is integrated with the output flange to provide high moment stiffness, high load capacity and precise positioning accuracy #### Easy mounting to a wide variety of servomotors Quick Connect® coupling | Rating Table | . 53 | |----------------------------------|------| | Performance | . 54 | | Backlash and Torsional Stiffness | 55 | | Outline Dimensions 56 | -59 | | Product Sizing & Selection60 | -61 | # **Motor Code** | Model Name | Size | Design Revision | Reduction Ratio | Output Configuration | Right Angle Specification | Input Configuration | |--------------------|------|-----------------|---------------------------|--|---------------------------|--| | HarmonicPlanetary® | 32 | | 5 44 45 04 00 45 | F0: Flange output
J2: Shaft output without | RA3 | This code represents the motor | | HPG
Right Angle | 50 | A | 5, 11, 15, 21, 33, 45 | J6: Shaft output with key
and center tapped | RA3, RA5 | mounting configuration. Please contact us for a unique part number based on the motor you are using. | | | 65 | | 5, 12, 15, 20, 25, 40, 50 | hole | RA5 | based on the motor you are using. | #### **Gearhead Construction** Figure 052-1 # Rating Table Table 053-1 | Size | Model | Ratio | Rated
Torque L10 *1 | Rated
Torque L50 *1 | Limit for
Average
Load Torque *2 | Limit for
Repeated Peak
Torque *3 | Limit for
Momentary
Torque *4 | Max. Average
Input Speed *5 | Max. Input
Speed *6 | |------|--------|-------|------------------------|------------------------|--|---|-------------------------------------|--------------------------------|------------------------| | | | | Nm | Nm | Nm | Nm | Nm | rpm | rpm | | | | 5 | 66 | 120 | 150 | 150 | 200 | | | | | | 11 | 88 | 170 | 170 | 330 | 440 | | | | 32 | RA3 | 15 | 92 | 170 | 170 | 300 | 600 | 1500 | 6000 | | 32 | nas | 21 | 98 | 170 | 170 | 300 | | 1300 | 0000 | | | | 33 | 108 | 200 | 200 | 330 | 650 | | | | | | 45 | 108 | 200 | 200 | 300 | | | | | | | 5 | 150 | 150 | 150 | 150 | 200 | | | | | | 11 | 170 | 330 | 330 | 330 | 440 | | | | | RA3 | 15 | 200 | 400 | 450 | 450 | 600 | 1500 | 4500 | | | nas | 21 | 200 | 450 | 500 | 630 | 840 | 1300 | 4300 | | | | 33 | 230 | 470 | 500 | 990 | 1320 | | | | 50 | | 45 | 230 | 500 | 500 | 1140 | 1800 | | | | 30 | | 5 | 260 | 290 | 340 | 400 | 500 | | | | | | 11 | 260 | 340 | 400 | 880 | 1100 | | | | | RA5 | 15 | 270 | 400 | 450 | 1200 | 1500 | 1300 | 4500 | | | l IIAS | 21 | 270 | 450 | 500 | 1150 | 2100 | 1500 | 4300 | | | | 33 | 270 | 470 | 500 | 1140 | 2180 | | | | | | 45 | 270 | 500 | 500 | 1140 | 2100 | | | | | | 5 | 400 | 400 | 400 | 400 | 500 | | | | | | 12 | 600 | 960 | 960 | 960 | 1200 | | | | | | 15 | 730 | 1200 | 1200 | 1200 | 1500 | | | | 65 | RA5 | 20 | 800 | 1370 | 1500 | 1600 | 2000 | 1300 | 3000 | | | | 25 | 850 | 1470 | 1500 | 2000 | 2500 | | | | | | 40 | 640 | 1300 | 1300 | 1900 | 4000 | | | | | | 50 | 750 | 1500 | 1500 | 2200 | 4500 | | | ^{*1:} Rated torque is based on life of 20,000 hours at max average input speed. ^{*2:} Average load torque calculated based on the application motion profile must not exceed values shown in the table. See p. 60. ^{*3:} The limit for torque during start and stop cycles. Always operate below this value. ^{*4:} The limit for torque during emergency stops or from external shock loads. ^{*5:} Max value of average input rotational speed during operation. ^{*6:} Maximum instantaneous input speed. # Performance Table Table 054-1 | 0: | Maralal | Ratio | Accuracy *1 | Repeatability *2 | Starting torque *3 | Backdriving torque *4 | No-load running torque *5 | |------|---------|-------|-------------|------------------|--------------------|-----------------------|---------------------------| | Size | Model | Hallo | arc min | arc sec | Ncm | Nm | Ncm | | | | 5 | | | 64 | 3.3 | 179 | | | | 11 | | | 58 | 6.8 | 162 | | 32 | RA3 | 15 | 4 | ±15 | 56 | 8.9 | 155 | | 32 | nas | 21 | 4 | ±15 | 53 | 12 | 100 | | | | 33 | | | 48 | 17 | 150 | | | | 45 | | | 47 | 23 | 150 | | | | 5 | | | 111 | 5.8 | 241 | | | | 11 | | | 76 | 8.9 | 198 | | | RA3 | 15 | 4 | ±15 | 71 | 11 | 173 | | | HAS | 21 | 4 | ±15 | 69 | 15 | 1/3 | | | | 33 | | | 61 | 21 | 161 | | 50 | | 45 | | | 59 | 28 | 101 | | 50 | | 5 | | | 132 | 6.9 | 496 | | | | 11 | | | 97 | 11 | 459 | | | RA5 | 15 | 3 | ±15 | 92 | 15 | 437 | | | HAS | 21 | 3 | ±15 | 90 | 20 | 437 | | | | 33 | | | 82 | 29 | 427 | | | | 45 | | | 80 | 38 | 421 | | | | 5 | | | 292 | 15 | 647 | | | | 12 | | | 177 | 23 | 532 | | | | 15 | | | 162 | 26 | 513 | | 65 | RA5 | 20 | 3 | ±15 | 147 | 31 | 494 | | | | 25 | | | 136 | 36 | 481 | | | | 40 | | | 127 | 51 | 460 | | | | 50 | | | 122 | 61 | 453 | *1: Transmission accuracy values represent the difference between the theoretical angle and the actual angle of output for any given input. The values in the table are maximum values. *2: The repeatability is measured by moving to a given theoretical position seven times, each time approaching from the same direction. The actual position of the output shaft is measured each time and repeatability is calculated as the 1/2 of the maximum difference of the seven data points. Measured values are indicated in angles (arc-sec) prefixed with "±". The values in the table are maximum values. - *3: Starting torque is the torque applied to the input side at which the output first starts to rotate. The values in the table are maximum values, and are based on 25° C. - *4: Backdriving torque is the torque value applied to the output side at which the input first starts to rotate. The values in the table are maximum values, and are based on 25° C. Note: Never rely on these values as a margin in a system that must hold an external load. A brake must be used where back driving is not permissible. *5: No-load running torque is the torque required at the input to operate the gearhead at a given speed under a no-load condition. The values in the table are average values, and are based on 25° C at 1,300 rpm for RA5 # **Backlash and Torsional Stiffness** Table 055-1 | ight Ang | | | | Torsion angle in one direction at TR X 0.15 | Torsional stiffness | |----------|-------|-------|----------|---|---------------------| | Size | Model | Ratio | Backlash | D | A/B | | | | | arc min | arc min | Nm/arc min | | | | 5 | | | 21.56 | | | | 11 | | | 23.52 | | 32 |
RA3 | 15 | 3 | 10 | 24.5 | | 32 | HAS | 21 | 3 | 1.9 | 25.48 | | | | 33 | | | 26.46 | | | | 45 | | | 20.40 | | | | 5 | | 2.7 | 38.22 | | | | 11 | | | 91.14 | | | RA3 | 15 | 3 | | 107.8 | | | l nas | 21 | 3 | 2.1 | 127.4 | | | | 33 | | | 137.2 | | 50 | | 45 | | | 107.2 | | 30 | | 5 | | 1.7 | 73.5 | | | | 11 | | | 117.6 | | | RA5 | 15 | 3 | | 127.4 | | | l nas | 21 | | 1.8 | 137.2 | | | | 33 | | | 147 | | | | 45 | | | | | | | 5 | | 2.3 | 98 | | | | 12 | | | 254.8 | | | | 15 | | | 284.2 | | 65 | RA5 | 20 | 3 | 2.0 | 313.6 | | | | 25 | | 2.0 | 333.2 | | | | 40 | | | 352.8 | | | | 50 | | | 362.6 | #### Torsional stiffness curve With the input of the gear locked in place, a torque applied to the output flange will torsionally deflect in proportion to the applied torque. We generate a torsional stiffness curve by slowly applying torque to the output in the following sequence: (1) Clockwise torque to TR, (2) Return to Zero, (3) Counter-Clockwise torque to -TR, (4) Return to Zero and (5) again Clockwise torque to TR. A loop of (1) > (2) > (3) > 4) > (5) will be drawn as in Fig. 055-1. The torsional stiffness in the region from "0.15 x T_{R} ," to " T_{R} ," is calculated using the average value of this slope. The torsional stiffness in the region from "zero torque" to "0.15 x TR," is lower. This is caused by the small amount of backlash plus engagement of the mating parts and loading of the planet gears under the initial torque applied. # Calculation of total torsion angle The method to calculate the total torsion angle (average value) in one direction when a load is applied from no-load state. #### Backlash (Hysteresis loss) The vertical distance between points (2) & (4) in Fig. 055-1 is called a hysteresis loss. The hysteresis loss between "Clockwise load torque TR," and "Counter Clockwise load torque -TR," is defined as the backlash of the HPG series. Backlash of the HPG Right Angle series is less than 3 arc-min. # **HPG-32RA Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 056-1 (Unit: mm) 98 4-D*2 82 12 h9 70 040 h7 084 R0.4 35 H*3 Hexagon socket 35 head bolt 13 12.5 Rubber cap G 4-Ø11 6-M8×12 (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. # **Dimension Table** (Unit: mm) Table 056-1 | | | A (H7) | | В | С | | F (| (H7) | G | | N | Mass (kg) *1 | | |--------|----------|--------|--------|------|------|--------|------|------|------|------|-----|--------------|--------| | Flange | Coupling | Min. | Max.*2 | Max. | Min. | Max.*2 | Min. | Max. | Min. | Max. | ., | Shaft | Flange | | 1 | 1 | 70 | 200 | 10 | 115 | 235 | 10 | 24 | 29 | 56 | 115 | 10.1 | 8.7 | | 2 | 2 | 110 | 200 | 6.5 | 125 | 235 | 10 | 35 | 54 | 81 | 140 | 10.3 | 8.9 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 1 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. - *2 Tapped hole for mounting screw. *3 May vary depending on motor interface dimensions. #### Moment of Inertia, Input Side (10⁻⁴ kgm²) Table 056-2 | | Ratio Coupling | 5 | 11 | 15 | 21 | 33 | 45 | |----------|----------------|------|------|-----|-----|----|----| | HPG 32RA | 1 | 6.7 | 6.3 | 6.1 | 5.8 | - | - | | | 2 | 8.09 | 7.62 | - | - | - | - | # **HPG-50RA3 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 057-1 (Unit: mm) 103 4-D*2 70 Ø50 h7 53 M10x20 ØF H7 16 12 Hexagon socket head bolt Rubber cap _m □170 22.5° **(** 4-Ø14 14-M8×12 (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. # **Dimension Table** (Unit: mm) Table 057-1 | Flange Coupling | | A (H7) | | В | (|) | F | (H7) | (| 3 | N | Mass (kg) *1 | | |-----------------|--------------|--------|--------|------|------|--------|------|------|------|------|-----|--------------|--------| | Flange | ige Coupling | Min. | Max.*3 | Max. | Min. | Max.*4 | Min. | Max. | Min. | Max. | ., | Shaft | Flange | | 1 | 1 | 70 | 200 | 10 | 115 | 235 | 10 | 24 | 29 | 56 | 115 | 24 | 21 | | 2 | 2 | 110 | 200 | 6.5 | 125 | 235 | 10 | 35 | 54 | 81 | 140 | 25 | 22 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the - configurations shown above are not suitable for your particular motor. 1 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 2 Tapped hole for motor mounting screw. 3 May vary depending on motor interface dimensions. # Moment of Inertia, Input Side (10⁻⁴ kgm²) Table 057-2 | | | • | | | | (| g / 2 | |--------------|-------------------|---|------|------|-----|-----|-------| | | Ratio
Coupling | 5 | 11 | 15 | 21 | 33 | 45 | | HPG
50RA3 | 1 | - | 9.4 | 8.8 | 7.5 | 6.4 | 6.4 | | | 2 | - | 10.8 | 10.2 | 8.9 | 7.8 | 7.73 | # **HPG-50RA5 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 058-1 # **Dimension Table** (Unit: mm) Table 058-1 | Flange Coupling | | A (H7) | | В | (| | F | (H7) | (| G | N | Mass (kg) *1 | | |-----------------|---------------|--------|--------|------|------|--------|------|------|------|------|-----|--------------|--------| | riange | ange Coupling | Min. | Max.*3 | Max. | Min. | Max.*4 | Min. | Max. | Min. | Max. | ., | Shaft | Flange | | 1 | 1 | 70 | 200 | 6.5 | 115 | 235 | 19 | 42 | 45 | 84 | 168 | 26.5 | 23.5 | | 2 | 2 | 110 | 200 | 6.5 | 125 | 235 | 19 | 42 | 45 | 116 | 200 | 27.5 | 24.5 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 1 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 2 Tapped hole for motor mounting screw. 3 May vary depending on motor interface dimensions. # Moment of Inertia, Input Side (10⁻⁴ kgm²) Table 058-2 | HPG | Ratio Coupling | 5 | 11 | 15 | 21 | 33 | 45 | |-------|----------------|------|------|------|----|----|----| | 50RA5 | 1 | 37.4 | 33.9 | 33.3 | 32 | - | - | # **HPG-65RA Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. # **Dimension Table** (Unit: mm) Table 059-1 | | Flange Coupling | Α (| H7) | В | (|) | F (| (H7) | (| ì | N | В | Mass | (kg) *1 | | |--------|-----------------|----------|------|--------|------|------|--------|------|------|------|------|-----|------|---------|--------| | | riange | Coupling | Min. | Max.*3 | Max. | Min. | Max.*4 | Min. | Max. | Min. | Max. | IN | | Shaft | Flange | | Single | 1 | 1 | 70 | 200 | 6.5 | 115 | 235 | 19 | 42 | 45 | 84 | 168 | 172 | 49.5 | 39.5 | | Stage | 2 | 2 | 110 | 200 | 6.5 | 125 | 235 | 19 | 42 | 45 | 116 | 200 | 172 | 50.5 | 40.5 | | Two | 1 | 1 | 70 | 200 | 6.5 | 115 | 235 | 19 | 42 | 45 | 84 | 168 | 226 | 58.8 | 48.8 | | Stage | 2 | 2 | 110 | 200 | 6.5 | 125 | 235 | 19 | 42 | 45 | 116 | 200 | 226 | 59.8 | 49.8 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. - *1 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. - *2 Tapped hole for motor mounting screw. *3 May vary depending on motor interface dimensions. # Moment of Inertia, Input Side (10⁻⁴ kgm²) Table 059-2 | | Ratio Coupling | 5 | 12 | 15 | 20 | 25 | 40 | 50 | |-------------|----------------|------|------|------|------|------|------|------| | HPG
65RA | 1 | - | 48.8 | 47.8 | 37.9 | 37.3 | 32.3 | 32.1 | | | 2 | 60.6 | 49.2 | 48.2 | 38.3 | 37.7 | - | - | # Sizing & Selection To fully utilize the excellent performance of the HPG-RA HarmonicPlanetary® gearheads, check your operating conditions and, using the flowchart, select the appropriate size gear for your application. Check your operating conditions against the following application motion profile and select a suitable size based on the flowchart shown on the right. Also check the life and static safety coefficient of the cross roller bearing. #### Flowchart for selecting a size Please use the flowchart shown below for selecting a size. Operating conditions must not exceed the performance #### Application motion profile Review the application motion profile. Check the specifications shown in the figure below. #### Obtain the value of each application motion profile Load torque T₁ to T_n (Nm) t1 to tn (sec) Time Output rotational speed n1 to nn (rpm) Normal operation pattern Starting (acceleration) Steady operation (constant velocity) T2, t2, n2 T3, t3, n3 Stopping (deceleration) Maximum rotational speed Max. output rotational speed no $max \ge n1$ to nnni max n1xR to nnxR Max. input rotational speed R: Reduction ratio (Restricted by motors) When impact torque is applied Ts Required life Impact torque L₅₀ = L (hours) T1, t1, n1 T4, t4, n4 Make a preliminary model selection with the following condition: $Tav \le Average load torque (Refer to rating table)$. $t_1+t_2+\cdots +t_n$ Determine the reduction ratio (R) based on the maximum output rotational speed (no max) and maximum input rotational speed (ni to the Caution note below. Review the operation conditions, size and
reduction ratio. ni *max* _≥R no max (A limit is placed on ni max by motors.) Calculate the maximum input speed (ni max) from the maximum output speed (no max) and the reduction ratio (R). ni max=no max • R Calculate the average input speed (ni av) from the average output speed (no av) and the reduction ratio (R): ni $av = \text{no } av \cdot \text{R} \leqq \text{Max}$. average input speed (nr). Check whether T1 and T3 are within peak torques (Nm) on start and stop in the rating table Check whether $T_{\rm S}$ is less than the momentary max. torque (Nm) value from the ratings. Calculate the life and check whether it meets the specification requirement. Tr: Rated torque nr: Max. average input speed L₅₀=20,000 The model number is confirmed If any of the following conditions exist, please consider selecting the next larger speed reducer, reduce the operating loads or reduce the operating speed. If this cannot be done, please contact Harmonic Drive LLC. Exercise caution especially when the duty cycle is close to continuous operation. i) Actual average load torque (Tav) > Permissible maximum value of average load torque or ii) Actual average input rotational speed (ni av) > Permissible average input rotational speed (nr), iii) Gearhead housing temperature > 70°C #### **Example of model number Selection** Load torque Tn (Nm) Time tn (sec) Output rotational speed nn (rpm) Normal operation pattern Starting (acceleration) $T_1 = 70 \text{ Nm}$, $t_1 = 0.3 \text{ sec}, \quad n_1 = 60 \text{ rpm}$ Steady operation (constant velocity) $T_2 = 18 \text{ Nm},$ $t_2 = 3 \text{ sec}, \quad n_2 = 120 \text{ rpm}$ Stopping (deceleration) T₃ = 35 Nm, $t_3 = 0.4 \text{ sec}, \quad n_3 = 60 \text{ rpm}$ $t_4 = 5 \text{ sec}, \quad n_4 = 0 \text{ rpm}$ $T_4 = 0 Nm$, Dwell Maximum rotational speed Max. output rotational speed Max. input rotational speed no *max* = 120 rpm ni max = 5,000 rpm(Restricted by motors) Emergency stop torque When impact torque is applied $T_s = 180 \text{ Nm}$ Required life $L_{50} = 30,000 \text{ (hours)}$ Calculate the average load torque applied to the output side based on the application motion profile: Tav (Nm). Calculate the average output speed based on the application motion profile: no av (rpm) Make a preliminary model selection with the following conditions. Tav = 30.2 Nm ≦ 120 Nm. (HPG-32A-5-RA3 is tentatively selected based on the average load torque (see the rating table) of size 32 and reduction ratio of 5.) Determine a reduction ratio (R) from the maximum output speed (no max) and maximum input speed (ni max). Calculate the maximum input speed (ni max) from the maximum output speed (no max) and reduction ratio (R): ni max = 120 rpm • 5 = 600 rpm Calculate the average input speed (ni av) from the average output speed (no av) and reduction ratio (R): ni av = 46.2 rpm $\cdot 5 = 1,525$ rpm \leq Max average input speed of size 32 1,500 rpm Check whether the maximum input speed is equal to or less than the values specified in the rating table ni max = 3,960 rpm ≤ 600 rpm (maximum input speed of size 32) Check whether T_1 and T_3 are within peak torques (Nm) on start and stop in the rating table $T_1 = 70$ Nm $\leqq 120$ Nm (Limit for repeated peak torque, size 32) $T_3 = 35$ Nm $\leqq 120$ Nm (Limit for repeated peak torque, size 32) Check whether Ts is less than limit for momentary torque (Nm) in the rating table Ts = 180 Nm \leq 200 Nm (momentary max. torque of size 32) Calculate life and check whether the calculated life meets the requirement. L₅₀ = 20,000 · $$\left(\frac{120 \text{ Nm}}{30.2 \text{ Nm}}\right)^{10/3}$$ · $\left(\frac{3,000 \text{ rpm}}{231 \text{ rpm}}\right)$ =25,932,572 (hours) ≧ 30,000 (hours) The selection of model number HPG-32A-5-RA3 is confirmed from the above calculations. to the Caution note at the bottom of page 60. Refer # Harmonic Planetary B HPN Value Series HPN Precision Planetary Gearheads are Quiet, Lightweight and Compact with Low Cost and Quick Delivery. HPN Planetary gearheads feature a robust design utilizing helical gears for quiet performance and long life. These gearheads are available with short lead times and are designed to couple to any servomotor with our Quick Connect® coupling. HPN gearheads are suitable for use in a wide range of applications for precision motion control and positioning. HPN Harmonic Planetary® gears are available in 5 sizes: 11, 14, 20, 32, and 40, with reduction ratios ranging from 3:1 to 31:1. - ◆ Backlash: One Stage <5 arc-minTwo Stage <7 arc-min - ♦ Low gear ratios, 3:1 to 31:1 - ♦ High efficiency - Helical gearing - ◆ Quiet design: Noise <58dB (Size 14) New two-stage ratios coming soon! # Harmonic Planetary[®] **HPN Value Series** #### Size 11, 14, 20, 32, 40 ## **Peak Torque** 9Nm \sim 752Nm Reduction Ratio New Two-Stage Ratios Coming Soon! Single stage: 3:1 to 10:1, Two stage: 13:1 to 31:1 #### **Backlash** Single stage: < 5 arc-min, Two stage: < 7 arc-min # **High Efficiency** **Up to 97%** # **Output Bearing** A radial ball bearing is integrated with the output flange to provide high moment stiffness, high load capacity and precise positioning accuracy. ### Easy mounting to a wide variety of servomotors Quick Connect® coupling Product Sizing & Selection71-72 į...., # **Motor Code** | <u> </u> | : | : | : | : | : | · | |--------------------|------|-----------------|----------------------------|--|--|--| | Model Name | Size | Design Revision | Reduction Ratio | Input Side Bearing | Output Configuration | Input Configuration | | HarmonicPlanetary* | 11 | | 4, 5, 7, 10, 16, 20, 30 | Z: Input side bearing with double non- contact | | This code represents the motor | | · | 14 | | | shields | J6: Shaft output with key and | mounting configuration. Please | | HPN
High Torque | 20 | A | | D: Input side bearing with | center tapped hole J8: Shaft output with center | contact us for a unique part | | riigii ioique | 32 | | 3, 4, 5, 7, 10, 13, 21, 31 | double contact seals.
(Recommended for output | tapped hole | number based on the motor you are using. | | | 40 | | | shaft up orientation.) | | 3 | Gearhead Construction Figure 064-1 Rubber cap Mounting pilot Shielded bearing Quick Connect® coupling Input rotation direction Output Output shaft Motor mounting flange # Rating Table Table 065-1 | Size | Number of Stages | Ratio | Rated
Torque L10 *1 | Rated
Torque L50 *1 | Limit for Average Load
Torque *2 | Limit for Repeated
Peak Torque *3 | Limit for Momentary
Torque *4 | Max. Average
Input Speed*5 | Max. Input
Speed (grease) *6 | Allowable
Radial Load *7 | Allowable
Axial Load *8 | |------|------------------|-------|------------------------|------------------------|-------------------------------------|--------------------------------------|----------------------------------|-------------------------------|---------------------------------|-----------------------------|----------------------------| | | | | Nm | | Nm | Nm | Nm | rpm | rpm | | N | | | | 4 | 9 | 14 | 14 | 14 | 40 | | | 240 | 280 | | | 1 | 5 | 9 | 14 | 14 | 16 | 40 | | | 260 | 320 | | | ' | 7 | 8 | 11 | 11 | 11 | 40 | | | 280 | 360 | | 11 | | 10 | 7 | 9 | 9 | 9 | 40 | 3,000 | 10,000 | 320 | 420 | | | | 16 | 11 | 18 | 18 | 24 | 40 | | | 360 | 460 | | | 2 | 20 | 13 | 22 | 22 | 24 | 40 | | | 400 | 560 | | | | 30 | 15 | 25 | 25 | 26 | 40 | | | 480 | 640 | | | | 3 | 14 | 22 | 22 | 25 | 89 | | | 380 | 340 | | | | 4 | 18 | 28 | 28 | 50 | 110 | | | 420 | 380 | | | 1 | 5 | 18 | 29 | 29 | 50 | 107 | | | 450 | 410 | | 14 | | 7 | 20 | 30 | 30 | 37 | 100 | 3,000 | 6,000 | 510 | 480 | | 1.4 | | 10 | 14 | 18 | 18 | 18 | 79 | 0,000 | 0,000 | 570 | 580 | | | | 13 | 20 | 30 | 30 | 43 | 106 | | | 630 | 630 | | | 2 | 21 | 24 | 30 | 30 | 50 | 99 | | | 740 | 780 | | | | 31 | 27 | 30 | 30 | 38 | 101 | | | 840 | 900 | | | | 3 | 31 | 51 | 51 | 74 | 226 | | | 830 | 900 | | | | 4 | 50 | 80 | 80 | 130 | 256 | | | 920 | 1,100 | | | 1 | 5 | 52 | 80 | 80 | 149 | 256 | | | 1,000 | 1,200 | | 20 | | 7 | 55 | 80 | 80 | 113 | 256 | 3,000 | 6.000 | 1,100 | 1,400 | | | | 10 | 41 | 54 | 54 | 54 | 216 | 0,000 | 0,000 | 1,230 | 1,600 | | | | 13 | 57 | 80 | 80 | 130 | 256 | | | 1,350 | 1,850 | | | 2 | 21 | 67 | 80 | 80 | 147 | 256 | | | 1,600 | 2,100 | | | | 31 | 76 | 80 | 80 | 113 | 256 | | | 1,800 | 2,200 | | | | 3 | 94 | 153 | 153 | 254 | 625 | | | 1,800 | 2,000 | | | | 4 | 122 | 198 | 198 | 376 | 625 | | | 1,900 | 2,300 | | | 1 | 5 | 127 | 200 | 200 | 376 | 625 | | | 2,000 | 2,500 | | 32 | | 7 | 135 | 200 | 200 | 376 | 625 | 3,000 | 6.000 | 2,300 | 2,900 | | 02 | | 10 | 128 | 185 | 185 | 185 | 625 | , 0,000 | 0,000 | 2,600 | 3,200 | | | | 13 | 141 | 200 | 200 | 376 | 625 | | | 2,900 | 3,600 | | | 2 | 21 | 166 | 200 | 200 | 376 | 625 | | | 3,400 | 3,800 | | | | 31 | 186 | 200 | 200 | 376 | 625 | | | 3,900 | 3,800 | | | | 3 | 272 | 440 | 440 | 752 | 1,137 | | 1 | 2,800 | 2,700 | | | | 4 | 287 | 460 | 460 | 752 | 1,265 | | 1 | 3,100 | 3,000 | | | 1 | 5 | 298 | 480 | 480 | 752 | 1,265 | | | 3,400 | 3,300 | | 40 | | 7 | 317 | 510 | 510 | 752 | 829 | 3,000 | 6,000 | 3,800 | 3,800 | | | | 10 | 302 | 480 | 480 | 509 | 829 | | | 4,200 | 4,200 | | | | 13 | 331 | 530 | 530 | 752 | 823 | | | 4,500 | 4,500 | | | 2 | 21 | 384 | 620 | 620 | 752 | 1,029 | | 1 | 5,000 | 5,000 | | | | 31 | 437 | 700 | 700 | 752 | 1,097 | | | 5,500 | 5,400 | - 1: Rated torque is based on life of 20,000 hours at max average input speed. 2: Average load torque calculated based on the application motion profile must not exceed values shown in the table. See p. 71. 3: The limit for torque during start and stop cycles. 4: The limit for torque during emergency stops or from external shock loads. Always operate below this value. 5: Max value of average input rotational speed during operation. 6: Maximum instantaneous input speed. 7: The load at which
the output bearing will have 20,000 hour life at the rated input speed. (Axial load = 0 and radial load point is in the center of the output shaft.) 8: The load at which the output bearing life will be 20,000 hours at the rated input speed. (Radial load = 0 and axial load point is in the center of the output shaft.) # Performance | | Ni mala an af | | Backlash | Noise*1 | Torsional | Stiffness | |------|---------------------|-------|----------|--------------------|--------------|-----------| | Size | Number of
Stages | Ratio | arc min | dB | kgfm/arc-min | | | | | 4 | | | | | | | 1 | 5 | < 5 | | | | | | ' | 7 | < 5 | | | | | 11 | | 10 | | < 56 ^{*2} | 0.060 | 20 | | | | 16 | | | | | | | 2 | 20 | < 7 | | | | | | | 30 | | | | | | | | 3*2 | | | | | | | | 4 | < 5 | | | 93 | | | 1 | 5 | | | | | | 14 | | 7 | | < 58 ^{*2} | 0.27 | | | 14 | | 10 | | | | | | | | 13 | | | | | | | 2 | 21 | < 7 | | | | | | | 31 | | | | | | | | 3*2 | | | | | | | | 4 | | | | | | | 1 | 5 | < 5 | | | | | 20 | | 7 | | < 60 ^{*2} | | | | -0 | | 10 | | . 50 | 0.77 | 260 | | | | 13 | | | | | | | 2 | 21 | < 7 | | | | | | | 31 | | | | | | *1: | The | above | noise | values | are | reference | values | |-----|-----|-------|-------|--------|-----|-----------|--------| | | | | | | | | | ^{*2:} Contact us for noise values for sizes with a reduction ratio of 3. | | | | | | | Table 065-3 | |------|-----------|-----------------|----------|--------------------|--------------|-------------| | Size | Number of | Ratio | Backlash | Noise*1 | Torsional | Stiffness | | 5126 | Stages | | arc min | | kgfm/arc-min | X100N·m/rad | | | | 3* ² | | | | | | | | 4 | | | | | | | 1 | 5 | < 5 | | | | | 32 | | 7 | | < 63*2 | 2.8 | 940 | | | | 10 | | | | | | | | 13 | | | | | | | 2 | 21 | < 7 | | | | | | | 31 | | | | | | | | 3* ² | | | | | | | | 4 | | | | | | | 1 | 5 | < 5 | | | | | 40 | | 7 | | < 65 ^{*2} | 4.2 | 1430 | | 40 | | 10 | | < 05 | | | | | | 13 | | | | | | | 2 | 21 | < 7 | | | | | | | 31 | | | | | # **HPN-11A Outline Dimensions** Figure 066-1 (Unit: mm) ϕ 35 h7 $^{0}_{-0.025}$ ØF H7 ØA H7 - M4X0.7 - 6H ▼ 12 M3x0.5 COUPLING SCREW DETAIL Y (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. Output shaft configuration shown is J6 (with a key and center tapped hole). J8 configuration has no key. # **Dimension Table** (Unit: mm) Table 066-1 | | A (H7) | | В | С | | F (H7) | | G *1 | | H *1 | К | Mass(kg) *1 | |--------------|--------|--------|------|------|--------|--------|------|------|------|------|------|-------------| | | Min. | Max.*4 | Max. | Min. | Max.*4 | Min. | Max. | Min. | Max. | | K | iviass(kg) | | Single Stage | 20 | 55 | 3 | 30 | 75 | 5 | 9 | 18 | 29 | 93.5 | 27.5 | 0.44 | | Two Stage | 20 | 33 | ŭ | 00 | 75 | , | , | 10 | 23 | 113 | 47 | 0.57 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. #### **Moment of Inertia** $(10^{-4} kgm^2)$ Table 066-2 | HPN 11A | Ratio Coupling | 4 | 5 | 7 | 10 | 16 | 20 | 30 | |---------|----------------|-------|------|-------|-------|------|------|-------| | IIFNTIA | 1 | 0.042 | 0.04 | 0.038 | 0.037 | 0.04 | 0.04 | 0.038 | # **HPN-14A Outline Dimensions** Figure 067-1 (Unit: mm) (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. Output shaft configuration shown is J6 (with a key and center tapped hole). J8 configuration has no key. # **Dimension Table** (Unit: mm) Table 067-1 | | Florida | Flange Coupling | Α (| H7) | В | (| С | F(| H7) | (| G . | H"1 | V | Mana/kg*1 | |--------------|---------|-----------------|------|--------|------|------|--------------------|------|------|------|------|-----|----|------------| | | Flarige | | Min. | Max.*1 | Max. | Min. | Max. ^{⁺1} | Min. | Max. | Min. | Max. | н. | K | Mass(kg)*1 | | Single Stage | 2 | 2 | 35 | 75 | _ | 40 | 100 | 6 | 14 | 18 | 28 | 117 | 36 | 0.95 | | Two Stage |] | 3 | 35 | /5 | 3 | 40 | 100 | | 14 | 10 | 20 | 142 | 61 | 1.3 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. # **Moment of Inertia** (10⁻⁴ kgm²) Table 067-2 | LIDN 44A | Ratio Coupling | 3 | 4 | 5 | 7 | 10 | 13 | 21 | 31 | |----------|----------------|------|------|-----|------|------|-----|-----|-----| | HPN 14A | 3 | 0.24 | 0.21 | 0.2 | 0.19 | 0.19 | 0.2 | 0.2 | 0.2 | www.electromate.com sales@electromate.com # **HPN-20A Outline Dimensions** # **Dimension Table** (Unit: mm) Table 068-1 | | Flange | Coupling | Α (| A (H7) | | С | | F (H7) | | G*1 | | H*1 | V | Mass(kg)*1 | |--------------|--------|----------|------|--------|------|------|--------|--------|------|------|------|-------|------|------------| | | riange | Coupling | Min. | Max.*1 | Max. | Min. | Max.*1 | Min. | Max. | Min. | Max. | | ĸ | Mass(kg) | | Single Stage | 1 | 1 | 50 | 85 | 7 | 55 | 115 | 13.5 | 25.4 | 26 | 47 | 166.5 | 52 | 3 | | Two Stage | ' | ' | 50 | 65 | ' | 33 | 113 | 15.5 | 25.4 | 24.5 | 41 | 188.2 | 73.7 | 3.7 | | Single Stage | | 1 | 50 | 125 | 7 | 60 | 155 | 13.5 | 25.4 | 44 | 65 | 184.5 | 52 | 3.7 | | Two Stage | 2 | ' | 50 | 125 | ' | 00 | 133 | 15.5 | 25.4 | 42.5 | 59 | 206.2 | 73.7 | 4.7 | | Single Stage | 3 | 2 | 35 | 75 | 7 | 40 | 100 | 9.5 | 14.2 | 25.5 | 40.5 | 160 | 52 | 2.6 | | Two Stage | 4 | 3 | 35 | 75 | 5 | 40 | 100 | 6 | 14.2 | 18 | 28 | 175 | 73.7 | 3.2 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. # **Moment of Inertia** (10⁻⁴ kgm²) Table 068-2 | | Ratio Coupling | 3 | 4 | 5 | 7 | 10 | 13 | 21 | 31 | |-----------|----------------|------|------|-----|------|------|------|------|------| | LIDNI COA | 1 | 1.2 | 1 | 1 | 0.9 | 0.87 | 0.9 | 0.88 | 0.87 | | HPN 20A | 2 | 0.55 | 0.35 | 0.3 | 0.24 | 0.21 | - | - | - | | | 3 | - | - | - | - | - | 0.25 | 0.22 | 0.22 | # **HPN-32A Outline Dimensions** # **Dimension Table** (Unit: mm) Table 069-1 | | Elango | Coupling | A (H7) | | В | С | | F (H7) | | G*1 | | H*1 | К | Mass(kg)*1 | |--------------|----------|----------|--------|--------|------|------|--------|--------|------|------|------|-------|-------|------------| | | i lariye | Couping | Min. | Max.*1 | Max. | Min. | Max.*1 | Min. | Max. | Min. | Max. | | 2 | mass(rig) | | | 1 | 1 | 50 | 85 | 7 | 55 | 115 | 13.5 | 25.4 | 25 | 51 | 200 | 58.5 | 6.6 | | Single Stage | 2 | 2 | 55 | 125 | 7 | 65 | 155 | 15.5 | 28 | 42 | 64 | 217.5 | 58.5 | 7.7 | | | 3 | 3 | 65 | 215 | 6.5 | 75 | 260 | 21.5 | 41 | 47 | 85 | 238.5 | 58.5 | 9.3 | | | 4 | 4 | 50 | 85 | 7 | 55 | 115 | 13.5 | 25.4 | 26 | 46.5 | 246.5 | 107.2 | 7.9 | | Two Stage | 5 | 4 | 50 | 125 | 7 | 60 | 155 | 13.5 | 25.4 | 44 | 65 | 264.5 | 107.2 | 9.1 | | | 6 | 5 | 35 | 75 | 7 | 40 | 100 | 9.5 | 14.2 | 25.5 | 40.5 | 240.5 | 107.2 | 7.2 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 1 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. #### **Moment of Inertia** (10⁻⁴ kgm²) Table 069-2 | | Ratio Coupling | 3 | 4 | 5 | 7 | 10 | 13 | 21 | 31 | |-----------|----------------|-----|-----|-----|-----|-----|------|------|-----| | | 1 | 2.3 | 1.7 | 1.5 | 1.3 | 1.2 | - | - | - | | LIDNI 20A | 2 | 5 | 3.8 | 3.3 | 2.9 | 2.7 | - | - | - | | HPN 32A | 3 | 7.5 | 6.2 | 5.7 | 5.3 | 5.3 | - | - | - | | | 4 | - | - | - | - | - | 1.3 | 1.1 | 1 | | | 5 | - | - | - | - | - | 0.55 | 0.35 | 0.3 | Toll Free Fax: (877) SERV099 # **HPN-40A Outline Dimensions** # **Dimension Table** (Unit: mm) Table 070-1 | | Flange | Coupling | A (H7) | | В | С | | F (H7) | | G*1 | | H*1 | V | Mass(kg)*1 | |--------------|--------|----------|--------|--------|------|------|--------|--------|------|------|-------|-------|-----|------------| | | Tiange | Couping | Min. | Max.*1 | Max. | Min. | Max.*1 | Min. | Max. | Min. | Max. | | ۷ | , mass(ng) | | | 1 | 1 | 70 | 215 | 6.5 | 80 | 260 | 27.5 | 41 | 34.5 | 71.5 | 295.5 | 81 | 17 | | Single Stage | 2 | 2 | 70 | 175 | 6.5 | 80 | 225 | 42 | 42 | 39 | 104.5 | 328.5 | 81 | 16 | | | 3 | 3 | 70 | 125 | 7 | 80 | 155 | 15.5 | 18.5 | 42 | 71.5 | 295.5 | 81 | 13 | | Two Stage | 4 | 4 | 55 | 125 | 7 | 65 | 155 | 15.5 | 28.5 | 42 | 63.5 | 332 | 126 | 17 | | 1 wo stage | 5 | 5 | 65 | 215 | 6.5 | 75 | 260 | 21.5 | 41 | 47 | 84.5 | 353 | 126 | 18 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. 1 May vary depending on motor interface
dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. 3 Tapped hole for motor mounting screw. #### **Moment of Inertia** (10⁻⁴ kgm²) Table 070-2 | | Ratio Coupling | 3 | 4 | 5 | 7 | 10 | 13 | 21 | 31 | |-----------|----------------|------|-----|-----|-----|-----|-----|-----|-----| | | 1 | 14 | 9.1 | 7.3 | 6.2 | 5.4 | - | - | - | | HPN 40A | 2 | 15 | 11 | 8.8 | 7.3 | 6.5 | - | - | - | | III N TOA | 3 | 10.2 | 6.9 | 5.4 | 4.1 | 3.4 | - | - | - | | | 4 | - | - | - | - | - | 4.5 | 3.5 | 3.4 | | | 5 | - | - | - | - | - | 7 | 6 | 5.8 | # Sizing & Selection To fully utilize the excellent performance of the HPN HarmonicPlanetary® gearheads, check your operating conditions and, using the flowchart, select the appropriate size gear for your application. Check your operating conditions against the following application motion profile and select a suitable size based on the flowchart shown on the right. Also, compare any application radial and axial loads supported by the gearhead output shaft to the allowable values in the ratings table to ensure an adequate output bearing service life. #### **Application motion profile** Review the application motion profile. Check the specifications shown in the figure below. ### Obtain the value of each application motion profile Load torque T₁ to T_n (Nm) t1 to tn (sec) Output rotational speed n1 to nn (rpm) Normal operation pattern T1, t1, n1 Starting (Acceleration) Steady operation (constant velocity) T₂. t₂. n₂ Stopping (deceleration) T₃. t₃. n₃ T4, t4, n4 Maximum rotational speed Max. output rotational speed no $max \ge n_1$ to n_n ni max n1×R to nn×R Max. input rotational speed R: Reduction ratio (Restricted by motors) **Emergency stop torque** When impact torque is applied Required life $L_{10} = L$ (hours) #### Flowchart for selecting a size Please use the flowchart shown below for selecting a size. Operating conditions must not exceed the performance reduce the operating loads or reduce the operating speed. If this cannot be done, please contact Harmonic Drive LLC. Exercise caution especially when the duty cycle is close to continuous operation. i) Actual average load torque (Tav) > Permissible maximum value of average load torque or ii) Actual average input rotational speed (ni av) > Permissible average input rotational speed (nr). iii) Gearhead housing temperature > 70°C Normal operation pattern Starting (acceleration) T₁ = 70 Nm, Steady operation $T_2 = 18 \text{ Nm},$ (constant velocity) Stopping (deceleration) T₃ = 35 Nm, Dwell $T_4 = 0 Nm$ $t_2 = 3 \text{ sec}, \quad n_2 = 120 \text{ rpm}$ $t_3 = 0.4 \text{ sec}, \quad n_3 = 60 \text{ rpm}$ $t_1 = 0.3 \text{ sec}, \quad n_1 = 60 \text{ rpm}$ $t_4 = 5 \text{ sec.}$ $n_4 = 0 \text{ rpm}$ Maximum rotational speed Max. output rotational speed Max. input rotational speed no *max* = 120 rpm ni *max* = 5,000 rpm (Restricted by motors) **Emergency stop torque** When impact torque is applied $T_s = 180 \text{ Nm}$ Required life $L_{50} = 30,000 \text{ (hours)}$ Calculate the average load torque applied to the output side based on the load torque pattern: Tav (Nm). Calculate the average output speed based on the load torque pattern: no av (rpm) no $av = \frac{ -|60\text{rpm}| \cdot 0.3\text{sec} + |120\text{rpm}| \cdot 3\text{sec} + |60\text{rpm}| \cdot 0.4\text{sec} + |0\text{rpm}| \cdot 5\text{sec} }{ -|60\text{rpm}| \cdot 0.4\text{sec} + |0\text{rpm}| \cdot 5\text{sec} }$ 0.3sec +3sec +0.4sec +5sec Make a preliminary model selection with the following conditions. T $av = 30.2 \text{ Nm} \le 80 \text{ Nm}$. (HPN-20A-31 is tentatively selected based on the average load torque (see the rating table) of size 20 and reduction ratio of 31.) Determine a reduction ratio (R) from the maximum output speed (no max) and maximum input speed (ni max). 5,000 rpm - = 41.7 ≧ 31 120 rpm Calculate the maximum input speed (ni max) from the maximum output speed (no max) and reduction ratio (R): ni max = 120 rpm • 31 = 3,720 rpm Calculate the average input speed (ni av) from the average output speed (no av) and reduction ratio (R): ni av = 46.2 rpm \cdot 31= 1,432 rpm \le Max average input speed of size 20 3,000 rpm Check whether the maximum input speed is less than the values specified in the rating table. ni max = 3,720 rpm ≤ 600 rpm (maximum input speed of size 20) Check whether T_1 and T_3 are within peak torques (Nm) on start and stop in the rating table. $T_1 = 70$ Nm $\leqq 113$ Nm (Limit for repeated peak torque, size 20) $T_3 = 35$ Nm $\leqq 113$ Nm (Limit for repeated peak torque, size 20) Check whether Ts is less than limit for momentary torque (Nm) in the rating table. Ts = 180 Nm \leq 256 Nm (momentary max. torque of size 20) Calculate life and check whether the calculated life meets the requirement. 80Nm 3,000 rpm =25,809,937 (hours) ≥ 30,000 (hours) 1,432 rpm The selection of model number HPN-20A-31 is confirmed from the above calculations. # Harmonic Drive® **Gearheads for Servomotors** **CSG-GH High Torque Series** **CSF-GH Standard Series** # Harmonic Drive® csg/csf-gh Series HarmonicDrive® gearing has a unique operating principle which utilizes the elastic mechanics of metals. This precision gear reducer consists of only 3 basic parts and provides high accuracy and repeatability. #### Wave Generator The Wave Generator is a thin raced ball bearing fitted onto an elliptical shaped hub. The inner race of the bearing is fixed to the cam and the outer race is elastically deformed into an ellipse via the balls. The Wave Generator is usually mounted onto the input shaft. #### Flexspline The Flexspline is a non-rigid, thin cylindrical cup with external teeth. The Flexspline fits over the Wave Generator and takes on its elliptical shape. The Flexspline is generally used as the output of the #### Circular Spline The Circular Spline is a rigid ring with internal teeth, engaging the teeth of the Flexspline across the major axis of the Wave Generator. The Circular Spline has two more teeth than the Flexspline and is generally mounted to the housing. The greatest benefit of HarmonicDrive® gearing is the weight and space savings compared to other gearheads because it consists of only three basic parts. Since many teeth are engaged simultaneously, it can transmit higher torque and provides high accuracy. A unique S tooth profile significantly improves torque capacity, life and torsional stiffness of the gear. - Zero-backlash - High Reduction ratios, 50:1 to 160:1 in a single stage - High precision positioning (repeatability ±4 to ±10 arc-sec) - High capacity cross roller output bearing - High torque capacity Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 # Harmonic Drive[®] ### **CSG-GH High Torque Series** #### Size 14, 20, 32, 45, 65 #### Peak torque 23Nm to 3419Nm #### Reduction ratio 50:1 to 160:1 #### Zero backlash #### **High Accuracy** Repeatability ±4 to ±10 arc-sec #### **High Load Capacity Output Bearing** A Cross Roller bearing is integrated with the output flange to provide high moment stiffness, high load capacity and precise positioning accuracy. #### Easy mounting to a wide variety of servomotors Quick Connect® coupling Torsional Stiffness, Vibration, Efficiency 98-99 Product Sizing & Selection100-101 ### **Motor Code** | Model Name | Size | Reduction Ratio | Model | Output Configuration | Input Configuration | |----------------|------|-----------------------|--------------|--|---| | | 14 | 50, 80, 100 | | | This was decreased a the constant | | HarmonicDrive* | 20 | | | F0: Flange output | This code represents the motor mounting configuration. Please | | CSG | 32 | 50, 80, 100, 120, 160 | GH: Gearhead | J2: Shaft output without key J6: Shaft output with key | contact us for a unique part number | | High Torque | 45 | | | and center tapped hole | based on the motor you are using. | | | 65 | 80, 100, 120, 160 | | | , , | #### Gearhead Construction (The figure indicates output shaft type.) ### Rating Table CSG-GH Table 077-1 | | | Rated Torque | Rated Torque | Limit for | Limit for | Limit for | Max. Average | Max. Input
Speed *7 | Ma | ass *8 | | |------|-------|----------------|----------------|----------------------|----------------------------|------------------------|----------------|------------------------|-------|--------|--| | Size | Ratio | at 2000 rpm *1 | at 3000 rpm *2 | Average
Torque *3 | Repeated
Peak Torque *4 | Momentary
Torque *5 | Input Speed *6 | Speed *7 | Shaft | Flange | | | | | Nm | Nm | Nm | Nm | Nm | rpm | rpm | kg | kg | | | | 50 | 7.0 | 6.1 | 9.0 | 23 | 46 | | | | | | | 14 | 80 | 10 | 8.7 | 14 | 30 | 61 | 3500 | 8500 | 0.62 | 0.50 | | | | 100 | 10 | 8.7 | 14 | 36 | 70 |] | | | | | | | 50 | 33 | 29 | 44 | 73 | 127 | | | | | | | | 80 | 44 | 38 | 61 | 96 | 165 | | | | | | | 20 | 100 | 52 | 45 | 64 | 107 | 191 | 3500 | 6500 | 1.8 | 1.4 | | | 32 | 120 | 52 | 45 | 64 | 113 | 191 | | | | | | | | 160 | 52 | 45 | 64 | 120 | 191 | | | | | | | | 50 | 99 | 86 | 140 | 281 | 497 | | | | | | | | 80 | 153 | 134 | 217 | 395 | 738 | | | | | | | | 100 | 178 | 155 | 281 | 433 | 812 | 3500 | 4800 | 4.6 | 3.2 | | | | 120 | 178 | 155 | 281 | 459 | 812 | | | | | | | | 160 | 178 | 155 | 281 | 484 | 812 |] | | | | | | | 50 | 229 | 200 | 345 | 650 | 1235 | | | | | | | | 80 | 407 | 356 | 507 | 918 | 1651 | | | | | | | 45 | 100 | 459 | 401 | 650 | 982 | 2033 | 3000 | 3800 | 13 | 10 | | | | 120 | 523 | 457 | 806 | 1070 | 2033 | | | | | | | 65 | 160 | 523 | 457 | 819 | 1147 | 2033 | | | | | | | | 80 | 969 | 846 | 1352 | 2743 | 4836 | | | | | | | | 100 | 1236 | 1080 | 1976 | 2990 | 5174 | 1900 | 2800 | 32 | 24 | | | | 120 | 1236 | 1080 | 2041 | 3263 | 5174 | 1900 2000 | 2000 | J | | | | | 160 | 1236 | 1080 | 2041 | 3419 | 5174 | | | | | | - *1: Rated torque is based on L10 life of 10,000
hours when input speed is 2000 rpm - *2: Rated torque is based on L10 life of 10,000 hours when input speed is 3000 rpm, input rotational speed for size 65 is 2800 rpm. *3: Average load torque calculated based on the application motion profile must not exceed values shown in the table. See p. 101. *4: The limit for torque during start and stop cycles. - The limit for torque during emergency stops or from external shock loads. Always operate below this value. Max value of average input rotational speed during operation. - *6: Max value of average input rotational *7: Maximum instantaneous input speed. *8: The mass is for the gearhead only (without input shaft coupling & motor flange). Please contact us for the mass of your specific configuration. ### Ratcheting Torque CSG-GH (Unit: Nm) Table 077-2 | Size | 14 | 20 | 32 | 45 | 65 | |------|-----|-----|------|------|-------| | 50 | 110 | 280 | 1200 | 3500 | _ | | 80 | 140 | 450 | 1800 | 5000 | 14000 | | 100 | 100 | 330 | 1300 | 4000 | 12000 | | 120 | - | 310 | 1200 | 3600 | 10000 | | 160 | _ | 280 | 1200 | 3300 | 10000 | ### **Buckling Torque CSG-GH** | | | | | | (Unit: Nm) та | able 077-3 | |------------|-----|-----|------|------|---------------|------------| | Size | 14 | 20 | 32 | 45 | 65 | | | All Ratios | 260 | 800 | 3500 | 8900 | 26600 | | ### Performance Table CSG-GH Table 078-1 | Size Plange Type Ratio | | | | | | | | Table 010 1 | |--|------------------|---|-------|-------------|------------------|--------------------|-----------------------|---------------------------| | 14 All 80 1.5 ±10 7.1 4.0 5.1 100 5.6 8 4.9 4.6 1100 100 10 10 10 10 10 10 10 10 10 10 | Size Flange Type | | Ratio | Accuracy *1 | Repeatability *2 | Starting torque *3 | Backdriving torque *4 | No-load running torque *5 | | 14 All 80 1.5 ±10 7.1 4.0 5.1 Type I 100 | | | | arc min | arc sec | Ncm | Nm | Ncm | | Type I 100 1.0 ±8 10 10 10 10 10 10 10 1 | | | 50 | | | 8.5 | 3.0 | 5.6 | | Type II | 14 | All | 80 | 1.5 | ±10 | 7.1 | 4.0 | 5.1 | | Type II & III 100 1.0 10 10 10 10 10 10 10 120 160 160 1.0 120 1.0 1.0 160 1.0 160 1.0 1.0 160 1.0 1.0 160 1.0 1.0 160 1.0 1.0 160 1.0 1.0 160 1.0 1.0 160 1.0 1.0 160 1.0 1.0 160 1.0 1.0 160 1.0 1.0 1.0 160 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. | | | 100 | | | 6.8 | 4.9 | 4.6 | | Type II & III | | | 50 | | | 14 | 8 | 11 | | 120 | | | 80 | | | 10 | 10 | 10 | | Type & | | Type I | 100 | 1.0 | ±8 | 10 | 13 | 10 | | Type & | | | 120 | | | 9.4 | 14 | 9.8 | | Type II & III I | 00 | | 160 | | | 8.9 | 18 | 9.6 | | Type II & III | 20 | | 50 | | | 21 | 12 | 11 | | Type II | | | 80 | | | 17 | 16 | 10 | | 120 160 160 150 30 9.6 151 37 47 48 48 46 42 42 43 43 63 40 42 41 43 63 40 42 41 43 63 40 42 81 40 40 39 42 47 41 40 39 42 41 40 39 42 41 41 41 42 41 43 43 40 40 40 40 40 40 40 40 40 40 40 40 40 | | Type II & III | 100 | 1.0 | ±8 | 16 | 20 | 10 | | Type II | | ,, | 120 | | | 16 | 24 | 9.8 | | Type II | | | 160 | | | 15 | 30 | 9.6 | | Type II | | | 50 | | | 61 | 37 | 47 | | 32 120 | 32 — | | 80 | | | 48 | 46 | 42 | | 32 Type & III | | Type II | 100 | 1.0 | ±6 | 47 | 56 | 41 | | 32 Type I & III Type I & III Tope | | | 120 | | | 43 | 63 | 40 | | Type I & III Type I & III 100 | | | 160 | | | 42 | 81 | 40 | | Type I & III | | | 50 | | | 53 | 32 | 47 | | 120 35 51 40 160 34 66 40 150 80 129 78 120 99 96 109 110 120 160 88 128 105 80 197 191 297 | | | 80 | | | 40 | 39 | 42 | | 120 160 160 35 51 40 40 40 50 80 100 1.0 1.0 120 160 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1. | | Type I & III | 100 | 1.0 | ±6 | 39 | 47 | 41 | | 45 All 50 80 1.0 ±5 129 78 120 99 96 109 110 120 160 82 158 103 80 197 191 297 | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 120 | | | 35 | 51 | 40 | | 45 All 80 1.0 ±5 99 96 109 107 110 107 120 160 82 158 103 80 197 191 297 | | | 160 | | | 34 | 66 | 40 | | 45 All 100 1.0 ±5 93 111 107
120 88 128 105
160 82 158 103
80 197 191 297 | | | 50 | | | 129 | 78 | 120 | | 120 88 128 105
160 82 158 103
80 197 191 297 | | | 80 | | | 99 | 96 | 109 | | 120 88 128 105 160 82 158 103 80 197 191 297 | 45 | ΔΙΙ | 100 | 1.0 | | 93 | 111 | 107 | | 80 197 191 297 | 65 | 7.11 | | 1.0 | ±3 | 88 | 128 | 105 | | | | | 160 | | | 82 | 158 | 103 | | 170 010 000 | | | 80 | | | 197 | 191 | 297 | | 65 All 100 1.0 ±4 176 213 289 | | All | 100 | 1.0 | | 176 | 213 | 289 | | 65 All 100 1.0 ±4 176 213 205 165 240 285 | | All | 120 | 1.0 | ± 4 | 165 | 240 | 285 | | 160 147 285 278 | | | 160 | | | 147 | 285 | 278 | Accuracy values represent the difference between the theoretical angle and the actual angle of output for any given input. The values in the table are Figure 078-1 The repeatability is measured by moving to a given theoretical position seven times, each time approaching from the same direction. The actual position of the output shaft is measured each time and repeatability is calculated as the 1/2 of the maximum difference of the seven data points. Measured values are indicated in angles (arc-sec) prefixed with "±". The values in the table are maximum values. *3: Starting torque is the torque value applied to the input side at which the output first starts to rotate. The values in the table are maximum values. | | Table 078-2 | |-----------------------------------|-------------| | Load | No load | | Speed reducer surface temperature | 25°C | | | | *4: Backdriving torque is the torque value applied to the output side at which the input first starts to rotate. The values in the table are Note: Never rely on these values as a margin in a system that must hold an external load. A brake must be used where back driving is not permissible. | | Table 078-3 | |-----------------------------------|-------------| | Load | No load | | Speed reducer surface temperature | 25°C | *5: No-load running torque is the torque required at the input to operate the gearhead at a given speed under a no-load condition. The values in the table are average values. | | Table 078-4 | |-----------------------------------|-------------| | Input speed | 2000 rpm | | Load | No load | | Speed reducer surface temperature | 25°C | ### Torsional Stiffness CSG-GH | | | | | | | | Table 079-1 | |------------------------------------|-----------------------|--------------|------|------|------|------|-------------| | Symbol | _ | Size | 14 | 20 | 32 | 45 | 65 | | | _ | Nm | 2.0 | 7.0 | 29 | 76 | 235 | | T. T. K. K. Reduction ratio 50 | 11 | kgfm | 0.2 | 0.7 | 3.0 | 7.8 | 24 | | | _ | Nm | 6.9 | 25 | 108 | 275 | 843 | | | 2 | kgfm | 0.7 | 2.5 | 11 | 28 | 86 | | | | ×10⁴Nm/rad | 0.34 | 1.3 | 5.4 | 15 | _ | | | K ₁ | kgfm/arc min | 0.1 | 0.38 | 1.6 | 4.3 | _ | | | | ×104Nm/rad | 0.47 | 1.8 | 7.8 | 20 | _ | | | K ₂ | kgfm/arc min | 0.14 | 0.52 | 2.3 | 6.0 | _ | | Reduction | | ×104Nm/rad | 0.57 | 2.3 | 9.8 | 26 | _ | | ratio | K ₃ | kgfm/arc min | 0.17 | 0.67 | 2.9 | 7.6 | _ | | 50 Θ- | | ×10⁻⁴rad | 5.8 | 5.2 | 5.5 | 5.2 | _ | | | O1 | arc min | 2.0 | 1.8 | 1.9 | 1.8 | _ | | | θ₂ | ×10⁻⁴rad | 16 | 15.4 | 15.7 | 15.1 | _ | | | U 2 | arc min | 5.6 | 5.3 | 5.4 | 5.2 | - | | | V | ×10⁴Nm/rad | 0.47 | 1.6 | 6.7 | 18 | 54 | | | N ₁ | kgfm/arc min | 0.14 | 0.47 | 2.0 | 5.4 | 16 | | | V | ×10⁴Nm/rad | 0.61 | 2.5 | 11 | 29 | 88 | | Reduction | K ₂ | kgfm/arc min | 0.18 | 0.75 | 3.2 | 8.5 | 26 | | ratio | v | ×104Nm/rad | 0.71 | 2.9 | 12 | 33 | 98 | | 80 or K | N 3 | kgfm/arc min | 0.21 | 0.85 | 3.7 | 9.7 | 29 | | | _ | ×10⁻⁴rad | 4.1 | 4.4 | 4.4 | 4.1 | 4.4 | | | O ₁ | arc min | 1.4 | 1.5 | 1.5 | 1.4 | 1.5 | | | ^ | ×10⁻⁴rad | 12 | 11.3 | 11.6 | 11.1 | 11.3 | | | θ2 | arc min | 4.2 | 3.9 | 4.0 | 3.8 | 3.9 | ^{*} The values in this table are average values. See page 98 for more information about torsional stiffness. ### Hysteresis Loss CSG-GH Reduction ratio 50: Approx. 5.8X10⁻⁴ rad (2arc min) Reduction ratio 80 or more: Approx. 2.9X10⁻⁴ rad (1arc min) ### **CSG-GH-14 Outline Dimensions** Only primary dimensions are shown in
the drawings below. Refer to the confirmation drawing for detailed dimensions. ### **Dimension Table** (Unit: mm) Table 080-1 | Flores | Coupling | Α (| A (H7) B *1 | | С | | F (H7) | | G *1 | | Н | Moment of Inertia | Mass | (kg) *2 | |---------|----------|------|-------------|------|------|------|--------|------|------|------|---------|-------------------------|-------|---------| | riange | | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | (10 ⁻⁴ kgm²) | Shaft | Flange | | Type I | 1 | 30 | 50 | 6.5 | 35 | 55 | 6.0 | 8 | 20.5 | 32.5 | 76 | 0.07 | 0.88 | 0.76 | | Type II | 1 | 50 | 55 | 7 | 55 | 75 | 6.0 | 8 | 20.5 | 32.5 | 76 | 0.07 | 0.90 | 0.78 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. *1 May vary depending on motor interface dimensions. - *2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. - *3 Tapped hole for motor mounting screw. ### **CSG-GH-20 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. ### **Dimension Table** (Unit: mm) Table 081-1 | | | | | | | | | | | | | , | 14. 111111/ | | |----------|----------|--------|------|------|------|------|--------|------|------|------|---------|--------------------------------------|-------------|---------| | Flange | Coupling | A (H7) | | В | С | | F (H7) | | G | | Н | Moment of Inertia | Mass | (kg) *1 | | Flange | | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | (10 ⁻⁴ kgm ²) | Shaft | Flange | | Type I | 1 | 30 | 45 | 5 | 35 | 50 | 7.0 | 7.8 | 22.0 | 33.0 | 92.0 | 0.28 | 2.3 | 1.9 | | Type II | 2 | 50 | 79 | 10 | 55 | 84 | 8.0 | 14.6 | 24.0 | 32.0 | 99.0 | 0.42 | 2.6 | 2.2 | | Type III | 2 | 50 | 100 | 10 | 55 | 105 | 8.0 | 14.6 | 24.0 | 32.0 | 99.0 | 0.42 | 2.8 | 2.4 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. - 1 May vary depending on motor interface dimensions. - *2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. - *3 Tapped hole for motor mounting screw. www.electromate.com sales@electromate.com ### **CSG-GH-32 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. ### **Dimension Table** (Unit: mm) Table 082-1 | E1 | Coupling | Α (| H7) | B *1 | С | | F (H7) | | G *1 | | H *1 | Moment of Inertia | Mass | (kg) *1 | |------------|----------|------|--------|------|------|--------|--------|------|------|------|-------|-------------------------|-------|---------| | Flange | | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Max. | (10 ⁻⁴ kgm²) | Shaft | Flange | | Type I | 1 | 50 | 105 | 10 | 55 | 110 | 10.8 | 19.6 | 27.0 | 57 | 123 | 2.7 | 6.4 | 5.0 | | Турет | 3 | 30 | 100 | 10 | 33 | 1.10 | 8.8 | 19.6 | 27.0 | 57 | 123 | 2.7 | 6.4 | 5.0 | | Type II | 2 | 60 | 175 *1 | 5 | 70 | 225 *1 | 16.0 | 25.8 | 39.0 | 72 | 140.5 | 2.7 | 7.9 | 6.5 | | Type III | 1 | 25 | 120 *1 | 7 | 40 | 135 *1 | 10.8 | 19.6 | 35.0 | 65 | 131 | 2.0 | 6.6 | 5.2 | | Type III – | 3 | 35 | 130 *1 | , | 40 | 135 ** | 8.8 | 19.6 | 35.0 | 65 | 131 | 2.0 | 6.6 | 5.2 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. *1 May vary depending on motor interface dimensions. - The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. Tapped hole for motor mounting screw. ### **CSG-GH-45 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. iaura 083-1 ### **Dimension Table** (Linit: mm) Table 093 1 | | | | | | | | | | | | | (UI | nit: mm) | Table 083-1 | |---------|----------|------|--------|------|------|--------|------|------|------|------|---------|--------------------------------------|----------|-------------| | E1 | 0 | Α(| H7) | В | (| | F (| (H7) | G | | H *1 | Moment of Inertia | Mass | (kg) *2 | | Flange | Coupling | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | (10 ⁻⁴ kgm ²) | Shaft | Flange | | Type I | 1 | 70 | 119 | 7 | 80 | 157 | 14.0 | 29.4 | 30.5 | 72 | 167 | 11 | 17.3 | 14.3 | | | 2 | 70 | 119 | 7 | 80 | 157 | 19.0 | 41 | 30.5 | 68 | 167 | 11 | 17.3 | 14.3 | | Type II | 1 | 70 | 175 *1 | 6.5 | 80 | 225 *1 | 14.0 | 29.4 | 44.5 | 86 | 181 | 11 | 17.7 | 14.7 | | | 2 | 70 | 175*1 | 6.5 | 80 | 225 *1 | 19.0 | 41 | 44.5 | 82 | 181 | 11 | 17.7 | 14.7 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. - *1 May vary depending on motor interface dimensions. - *2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. - *3 Tapped hole for motor mounting screw. ### **CSG-GH-65 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. ### **Dimension Table** (Unit: mm) Table 084-1 | Flange | Coupling | Α(| A (H7) B | | ВС | | F (H7) | | G | *1 | H*1 | Moment of Inertia | Mass | (kg) *2 | |---------|----------|------|----------|------|------|--------|--------|------|------|------|-------|--------------------------------------|-------|---------| | | Couping | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Max. | (10 ⁻⁴ kgm ²) | Shaft | Flange | | Type I | 1 | 95 | 110 | 10 | 105 | 125 | 19.0 | 39.3 | 32.0 | 72 | 201.5 | 51 | 36.2 | 27.6 | | Type II | 1 | 70 | 215*1 | 6.5 | 80 | 260 *1 | 19.0 | 39.3 | 44.5 | 84.5 | 214 | 51 | 38.3 | 29.7 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. - *1 May vary depending on motor interface dimensions. - *2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. - *3 Tapped hole for motor mounting screw. #### **NOTES** ## Harmonic Drive® **CSF-GH Standard Series** #### **Size** 14, 20, 32, 45, 65 #### **Peak torque** 18Nm to 2630Nm #### **Reduction ratio** 50:1 to 160:1 #### Zero backlash #### **High Accuracy** Repeatability ±4 to ±10 arc-sec #### **High Load Capacity Output Bearing** A Cross Roller bearing is integrated with the output flange to provide high moment stiffness, high load capacity and precise positioning accuracy. #### Easy mounting to a wide variety of servomotors Quick Connect® coupling ### **Motor Code** | : | : | : | : | : | : | |------------------------|------|-----------------------|--------------|---|---| | Model Name | Size | Reduction Ratio | Model | Output Configuration | Input Configuration | | II Dom | 14 | 50, 80, 100 | | | T | | HarmonicDrive* | 20 | | | F0: Flange output | This code represents the motor mounting configuration. Please | | CSF
Standard | 32 | 50, 80, 100, 120, 160 | GH: Gearhead | J2: Shaft output without key
J6: Shaft output with key | contact us for a unique part number | | Standard | 45 | | | and center tapped hole | based on the motor you are using. | | | 65 | 80, 100, 120, 160 | | and conton tapped note | · · · | #### Gearhead Construction ### Rating Table CSF-GH | | | Rated Torque | Rated Torque | Limit for | Limit for | Limit for
Momentary | Max. Average
Input Speed *6 | Max. Input
Speed *7 | Ma | ass *8 | |------|-------|----------------|----------------|----------------------|----------------------------|------------------------|--------------------------------|------------------------|-------|--------| | Size | Ratio | at 2000 rpm *1 | at 3000 rpm *2 | Average
Torque *3 | Repeated
Peak Torque *4 | Torque *5 | Input Speed *6 | Speed *7 | Shaft | Flange | | | | Nm | Nm | Nm | Nm | Nm | rpm | | kg | kg | | | 50 | 5.4 | 4.7 | 6.9 | 18 | 35 | | | | | | 14 | 80 | 7.8 | 6.8 | 11 | 23 | 47 | 3500 | 8500 | 0.62 | 0.50 | | | 100 | 7.8 | 6.8 | 11 | 28 | 54 | | | | | | | 50 | 25 | 22 | 34 | 56 | 98 | | | | | | | 80 | 34 | 30 | 47 | 74 | 127 | | | | | | 20 | 100 | 40 | 35 | 49 | 82 | 147 | 3500 | 6500 | 1.8 | 1.4 | | | 120 | 40 | 35 | 49 | 87 | 147 | | | | | | | 160 | 40 | 35 | 49 | 92 | 147 | | | | | | | 50 | 76 | 66 | 108 | 216 | 382 | | | | | | | 80 | 118 | 103 | 167 | 304 | 568 | | | | | | 32 | 100 | 137 | 120 | 216 | 333 | 647 | 3500 | 4800 | 4.6 | 3.2 | | | 120 | 137 | 120 | 216 | 353 | 686 |] | | | | | | 160 | 137 | 120 | 216 | 372 | 686 | | | | | | | 50 | 176 | 154 | 265 | 500 | 950 | | | | | | | 80 | 313 | 273 | 390 | 706 | 1270 | | | | | | 45 | 100 | 353 | 308 | 500 | 755 | 1570 | 3000 | 3800 | 13 | 10 | | | 120 | 402 | 351 | 620 | 823 | 1760 | | | | | | | 160 | 402 | 351 | 630 | 882 | 1910 | | | | | | | 80 | 745 | 651 | 1040 | 2110 | 3720 | | | | | | 65 | 100 | 951 | 831 | 1520 | 2300 | 4750 | 1900 | 2800 | 32 | 24 | | 33 | 120 | 951 | 831 | 1570 | 2510 | 4750 | 1 .500 | 2000 | J2 | | | | 160 | 951 | 831 | 1570 | 2630 | 4750 | | | | | - *1: Rated torque is based on L10 life of 7,000 hours when input speed is 2000 rpm *2: Rated torque is based on L10 life of 7,000 hours when input speed is 3000 rpm, input speed for size 65 is 2800 rpm. *3: Average load torque calculated based on the
application motion profile must not exceed values shown in the table. See p. 101. *4: The limit for torque during start and stop cycles. *5: The limit for torque during emergency stops or from external shock loads. Always operate below this value. - 3: Average load torque during start and stop cycles. 4: The limit for torque during start and stop cycles. 5: The limit for torque during emergency stops or from external shock loads. Always operate below this value. 6: Max value of average input rotational speed during operation. 7: Maximum instantaneous input speed. 8: The mass is for the gearhead only (without input shaft coupling & motor flange). Please contact us for the mass of your specific configuration. ### Ratcheting Torque CSF-GH (Unit: Nm) Table 087-2 | Size | 14 | 20 | 32 | 45 | 65 | |------|-----|-----|------|------|-------| | 50 | 88 | 220 | 980 | 2700 | _ | | 80 | 110 | 350 | 1400 | 3900 | 11000 | | 100 | 84 | 260 | 1000 | 3100 | 9400 | | 120 | - | 240 | 980 | 2800 | 8300 | | 160 | - | 220 | 980 | 2600 | 8000 | ### **Buckling Torque CSF-GH** | (Unit: Nm) | Table 087-3 | |------------|-------------| | 65 | | | | | | | | (Unit: NIII) Table 087-3 | |------------|-----|-----|------|------|--------------------------| | Size | 14 | 20 | 32 | 45 | 65 | | All Ratios | 190 | 560 | 2200 | 5800 | 17000 | sales@electromate.com Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 ### Performance Table CSF-GH | | | | | | | | Table 088-1 | |------|---------------|-------|------------|-----------------|-------------------|----------------------|--------------------------| | Size | Flange Type | Ratio | Accuracy*1 | Repeatability*2 | Starting torque*3 | Backdriving torque*4 | No-load running torque*5 | | | | | arc min | arc sec | | Nm | Nem | | | | 50 | | | 8.2 | 2.9 | 5.6 | | 14 | All | 80 | 1.5 | ±10 | 6.9 | 3.9 | 5.1 | | | | 100 | | | 6.6 | 4.7 | 4.6 | | | | 50 | | | 13 | 7.8 | 11 | | | | 80 | | | 10 | 9.6 | 10 | | | Type I | 100 | 1.0 | ±8 | 9.6 | 12 | 10 | | | | 120 | | | 9.1 | 13 | 9.8 | | 20 | 20 | 160 | | | 8.6 | 17 | 9.6 | | 20 | | 50 | | | 20 | 12 | 11 | | | | 80 | | | 17 | 16 | 10 | | | Type II & III | 100 | 1.0 | ±8 | 16 | 19 | 10 | | | 71. | 120 | | | 16 | 23 | 9.8 | | | | 160 | | | 15 | 29 | 9.6 | | | | 50 | | ±6 | 58 | 35 | 47 | | | | 80 | | | 46 | 44 | 42 | | | Type II | 100 | 1.0 | | 45 | 54 | 41 | | | | 120 | | | 42 | 61 | 40 | | 32 | | 160 | | | 41 | 79 | 40 | | 32 | | 50 | | | 50 | 30 | 47 | | | | 80 | | | 38 | 37 | 42 | | | Type I & III | 100 | 1.0 | ±6 | 37 | 45 | 41 | | | 71 | 120 | | | 34 | 49 | 40 | | | | 160 | | | 33 | 64 | 40 | | | | 50 | | | 123 | 74 | 120 | | | | 80 | | | 95 | 92 | 109 | | 45 | All | 100 | 1.0 | ±5 | 89 | 107 | 107 | | | All | 120 | | | 85 | 123 | 105 | | | | 160 | | | 79 | 152 | 103 | | | | 80 | | | 186 | 179 | 297 | | 65 | All | 100 | 1.0 | | 166 | 200 | 289 | | 05 | , | 120 | 1.0 | ±4 | 156 | 226 | 285 | | | | 160 | | | 139 | 268 | 278 | *1: Accuracy values represent the difference between the theoretical angle and the actual angle of output for any given input. The values shown in the table are maximum values. θer : Accuracy θer Figure 088-1 :Input angle : Actual output angle θ_2 : Gear reduction ratio The repeatability is measured by moving to a given theoretical position seven times, each time approaching from the same direction. The actual position of the output shaft is measured each time and repeatability is calculated as the 1/2 of the maximum difference of the seven data points. Measured values are indicated in angles (arc-sec) prefixed with "±". The values in the table are maximum values. Figure 088-2 *3: Starting torque is the torque value applied to the input side at which the output first starts to rotate. The values in the table are maximum values. No load *4: Backdriving torque is the torque value applied to the output side at which the input first starts to rotate. The values in the table are maximum values. Note: Never rely on these values as a margin in a system that must hold an external load. A brake must be used where back driving is not permissible. | | Table 088-3 | |-----------------------------------|-------------| | Load | No load | | Speed reducer surface temperature | 25°C | *5: No-load running torque is the torque required at the input to operate the gearhead at a given speed under a no-load condition. The values in the table are average values. | Input speed | 2000 rpm | |------------------------------|--------------| | Load | No load | | Speed reducer surface temper | erature 25°C | ### Torsional Stiffness CSF-GH | _ | | | | | | | Table 089-1 | |-----------------|----------------|-------------------------|------|------|------|------|-------------| | Symbol | _ | Size | 14 | 20 | 32 | 45 | 65 | | | _ | Nm | 2.0 | 7.0 | 29 | 76 | 235 | | | T₁ | kgfm | 0.2 | 0.7 | 3.0 | 7.8 | 24 | | | _ | Nm | 6.9 | 25 | 108 | 275 | 843 | | | T2 | kgfm | 0.7 | 2.5 | 11 | 28 | 86 | | | ., | ×10 ⁴ Nm/rad | 0.34 | 1.3 | 5.4 | 15 | _ | | | K₁ | kgfm/arc min | 0.1 | 0.38 | 1.6 | 4.3 | _ | | | K₂ | ×10⁴Nm/rad | 0.47 | 1.8 | 7.8 | 20 | _ | | | | kgfm/arc min | 0.14 | 0.52 | 2.3 | 6.0 | = | | Reduction | K₃ | ×10 ⁴ Nm/rad | 0.57 | 2.3 | 9.8 | 26 | _ | | ratio | | kgfm/arc min | 0.17 | 0.67 | 2.9 | 7.6 | _ | | 50 | θ | ×10⁻⁴rad | 5.8 | 5.2 | 5.5 | 5.2 | = | | | | arc min | 2.0 | 1.8 | 1.9 | 1.8 | = | | | θ₂ | ×10⁻⁴rad | 16 | 15.4 | 15.7 | 15.1 | _ | | | | arc min | 5.6 | 5.3 | 5.4 | 5.2 | _ | | | | ×104Nm/rad | 0.47 | 1.6 | 6.7 | 18 | 54 | | | K₁ | kgfm/arc min | 0.14 | 0.47 | 2.0 | 5.4 | 16 | | | K ₂ | ×10 ⁴ Nm/rad | 0.61 | 2.5 | 11 | 29 | 88 | | D. d. di | K2 | kgfm/arc min | 0.18 | 0.75 | 3.2 | 8.5 | 26 | | Reduction ratio | | ×10 ⁴ Nm/rad | 0.71 | 2.9 | 12 | 33 | 98 | | 80 or | K₃ | kgfm/arc min | 0.21 | 0.85 | 3.7 | 9.7 | 29 | | more | θι | ×10⁻⁴rad | 4.1 | 4.4 | 4.4 | 4.1 | 4.4 | | | θı | arc min | 1.4 | 1.5 | 1.5 | 1.4 | 1.5 | | | | ×10⁻⁴rad | 12 | 11.3 | 11.6 | 11.1 | 11.3 | | | θ2 | arc min | 4.2 | 3.9 | 4.0 | 3.8 | 3.9 | ^{*} The values in this table are average values. See page 98 for more information about torsional stiffness. ### Hysteresis Loss CSF-GH Reduction ratio 50: Approx. 5.8X10⁻⁴ rad (2arc min) ### **CSF-GH-14 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 090-1 ### **Dimension Table** (Unit: mm) Table 090-1 | Flange | 0 | Α (| H7) | B *1 | (| C | F (| (H7) | (| G . | H* | Moment of Inertia | Mass | (kg) *2 | |---------|----------|------|------|------|------|------|------|------|------|------|---------|-------------------------|-------|---------| | | Coupling | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | (10 ⁻⁴ kgm²) | Shaft | Flange | | Type I | 1 | 30 | 50 | 6.5 | 35 | 55 | 6.0 | 8 | 20.5 | 32.5 | 76 | 0.07 | 0.88 | 0.76 | | Type II | 1 | 30 | 55 | 7 | 55 | 75 | 6.0 | 8 | 20.5 | 32.5 | 76 | 0.07 | 0.90 | 0.78 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. - 11 May vary depending on motor interface dimensions. 2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. - *3 Tapped hole for mounting screw. ### **CSF-GH-20 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. ### **Dimension Table** (Unit: mm) Table 091-1 | Flores | Causlina | A (H7) | | B*1 | С | | F (H7) | | G *1 | | H*1 | Moment of Inertia | Mass | (kg) *2 | |----------|----------|--------|------|------|------|------|--------|------|------|------|---------|--------------------------------------|-------|---------| | Flange | Coupling | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | (10 ⁻⁴ kgm ²) | Shaft | Flange | | Type I | 1 | 30 | 45 | 5 | 35 | 50 | 7.0 | 7.8 | 22 | 33 | 92 | 0.28 | 2.3 | 1.9 | | Type II | 2 | 50 | 79 | 10 | 55 | 84 | 8.0 | 14.6 | 24 | 32 | 99 | 0.42 | 2.6 | 2.2 | | Type III | 2 | 50 | 100 | 10 | 55 | 105 | 8.0 | 14.6 | 24 | 32 | 99 | 0.42 | 2.8 | 2.4 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. *1 May vary depending on motor interface dimensions. - *2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. - *3 Tapped hole for motor mounting screw. www.electromate.com sales@electromate.com ### **CSF-GH-32 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. ### **Dimension Table** | Element | Counting | A (H7) | | B *1 | C | | F (H7) | | G *1 | | H*1 | Moment of Inertia | Mass | (kg) *1 | |----------|----------|--------|--------|------|------|--------|--------|------|------|------|-------|--------------------------------------|-------|---------| | Flange | Coupling | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Max. | (10 ⁻⁴ kgm ²) | Shaft | Flange | | Type I | 1 | 50 | 105 | 10 | 55 | 100 | 10.8 | 19.6 | 27 | 57 | 123 | 2.7 | 6.4 | 5.0 | | Турст | 3 | 30 | 103 | 10 | 33 | 100 | 8.8 | 19.6 | 27 | 46 | 120 | 2., | 6.4 | 5.0 | | Type II | 2 | 60 | 175 *1 | 5 | 70 | 225 *1 | 16 | 25.8 | 39 | 72 | 140.5 | 2.7 | 7.9 | 6.5 | | Type III | 1 | 35 | 130 *1 | 7 | 40 | 135 *1 | 10.8 | 19.6 | 35 | 65 | 131 | 2.0 | 6.6 | 5.2 | | Type III | 3 | 35 | 130 ** | ′ | 40 | 135 | 8.8 | 19.6 | 35 | 54 | 131 | 2.0 | 6.6 | 5.2 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. *1 May vary depending on
motor interface dimensions. - *2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. - *3 Tapped hole for motor mounting screw. ### **CSF-GH-45 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. ### **Dimension Table** (Unit: mm) Table 093-1 | | | | | | | | | | | | | (| | 10010 000 1 | |---------|----------|------|--------|------|------|--------|------|------|------|------|---------|-------------------------|-------|-------------| | Elemen | | Α (| H7) | В | (|) | F (| (H7) | G | *1 | H*1 | Moment of Inertia | Mass | (kg) *2 | | Flange | Coupling | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Typical | (10 ⁻⁴ kgm²) | Shaft | Flange | | Type I | 1 | 70 | 119 | 7 | 80 | 157 | 14.0 | 29.4 | 30.5 | 72 | 167 | 11 | 17.3 | 14.3 | | Type I | 2 | 70 | 119 | 7 | 80 | 157 | 19.0 | 41 | 30.5 | 68 | 167 | 11 | 17.3 | 14.3 | | Type II | 1 | 70 | 175 *1 | 6.5 | 80 | 225 *1 | 14.0 | 29.4 | 44.5 | 86 | 181 | 11 | 17.7 | 14.7 | | Type II | 2 | 70 | 175 *1 | 6.5 | 80 | 225 *1 | 19.0 | 41 | 44.5 | 82 | 181 | 11 | 17.7 | 14.7 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 - *1 May vary depending on motor interface dimensions. - *2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. - *3 Tapped hole for motor mounting screw. www.electromate.com sales@electromate.com ### **CSF-GH-65 Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. Figure 094-1 (Unit: mm) Flange Type I 119.5 □230±2 65.5 Grease filling port 2-M10×20 M6 P=1 Ø214 Ø168 (16) Flange Type II Grease filling port □230±2 65.5 2-M10×20 0220 h8 0220 h8 0214 010 H 0168 /8-M16×24 (28.5) G Output shaft shape: J2 (Shaft output without key) J6 (Shaft output with key and center tapped hole) 192 100 35 57 25 R0.4 (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. ### **Dimension Table** (Unit: mm) Table 094-1 | Ele: | Flange Coupling | | A (H7) | | ВС | | F (H7) | | G *1 | | H *1 | Moment of Inertia | Mass | (kg) *2 | | |------|-----------------|----------|--------|--------|------|------|--------|------|------|------|------|-------------------|-------------------------|---------|--------| | Fiai | nge | Coupling | Min. | Max. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Max. | (10 ⁻⁴ kgm²) | Shaft | Flange | | Тур | oe I | 1 | 95 | 110 | 10 | 105 | 125 | 19.0 | 39.3 | 32.0 | 72 | 201.5 | 51 | 36.2 | 27.6 | | Тур | e II | 1 | 70 | 215 *1 | 6.5 | 80 | 260 *1 | 19.0 | 39.3 | 44.5 | 84.5 | 214 | 51 | 38.3 | 29.7 | Refer to the confirmation drawing for detailed dimensions. Dimensions of typical products are shown. Please contact us for other mounting options if the configurations shown above are not suitable for your particular motor. - *1 May vary depending on motor interface dimensions. *2 The mass will vary slightly depending on the ratio and on the inside diameter of the input shaft coupling. *3 Tapped hole for motor mounting screw. #### **NOTES** ### Rating Table Definitions See the corresponding pages of each series for values from the ratings. #### ■ Rated torque Rated torque indicates allowable continuous load torque at input #### ■ Limit for Repeated Peak Torque (see Graph 096-1) During acceleration and deceleration the Harmonic Drive® gear experiences a peak torque as a result of the moment of inertia of the output load. The table indicates the limit for repeated peak torque. #### ■ Limit for Average Torque In cases where load torque and input speed vary, it is necessary to calculate an average value of load torque. The table indicates the limit for average torque. The average torque calculated must not exceed this limit. (calculation formula: Page 100) #### **■** Limit for Momentary Torque (see Graph 096-1) The gear may be subjected to momentary torques in the event of a collision or emergency stop. The magnitude and frequency of occurrence of such peak torques must be kept to a minimum and they should, under no circumstance, occur during normal operating cycle. The allowable number of occurrences of the momentary torque may be calculated by using the formula on #### ■ Maximum Average Input Speed **Maximum Input Speed** Do not exceed the allowable rating. (calculation formula of the average input speed: Page 100). #### Inertia The rating indicates the moment of inertia reflected to the gear input. ### Life #### ■ Life of the wave generator The life of a gear is determined by the life of the wave generator bearing. The life may be calculated by using the input speed and the output load torque. | | | Table 096- | |--------------------------------|--------------|--------------| | | Li | fe | | Series name | CSF-GH | CSG-GH | | L ₁₀ | 7,000 hours | 10,000 hours | | L ₅₀ (average life) | 35,000 hours | 50,000 hours | ^{*} Life is based on the input speed and output load torque from the ratings Calculation formula for Rated Lifetime | | $Lh = Ln \cdot \left(\frac{Tr}{Tav} \right)^{\circ} \cdot \left(\frac{Nr}{Nav} \right)$ | | | | | | | |-----|---|--|--|--|--|--|--| | | Table 096-2 | | | | | | | | Ln | Life of L ₁₀ or L ₅₀ c | | | | | | | | Tr | Rated torque | | | | | | | | Nr | Rated input speed | | | | | | | | Tav | Average load torque on the output side (calculation formula: Page 100) | | | | | | | #### Relative torque rating - * Lubricant life not taken into consideration in the graph described above. - * Use the graph above as reference values Nav Average input speed (calculation formula: Page 100) #### ■ Strength of flexspline The Flexspline is subjected to repeated deflections, and its strength determines the torque capacity of the Harmonic Drive® gear. The values given for Rated Torque at Rated Speed and for the allowable Repeated Peak Torque are based on an infinite fatigue life for the Flexspline. The torque that occurs during a collision must be below the momentary torque (impact torque). The maximum number of occurrences is given by the equation below. Allowable limit of the bending cycles of the flexspline during rotation of the wave generator while the impact torque is applied: 1.0 x 10⁴ (cycles) The torque that occurs during a collision must be below the momentary torque (impact torque). The maximum number of occurrences is given by the equation below. Calculation formula Formula 097-1 $$N = \frac{1.0 \times 10^4}{2 \times \frac{n}{60} \times t}$$ | Permissible occurrences | N occurrences | |--|-----------------------------------| | Time that impact torque is applied | t sec | | Rotational speed of the wave generator | n rpm | | The flexspline bends two times per one | revolution of the wave generator. | If the number of occurrences is exceeded, the Flexspline may experience a fatique failure. #### ■ Buckling torque When a highly excessive torque (16 to 17 times rated torque) is applied to the output with the input stationary, the flexspline may experience elastic deformation. This is defined as buckling torque. * See the corresponding pages of each series for buckling torque values When the flexspline buckles, early failure of the HarmonicDrive® gear may occur. #### ■ Ratcheting torque When excessive torque (8 to 9 times rated torque) is applied while the gear is in motion, the teeth between the Circular Spline and Flexspline may not engage properly. This phenomenon is called ratcheting and the torque at which this occurs is called ratcheting torque. Ratcheting may cause the Flexspline to become non-concentric with the Circular Spline. Operating in this condition may result in shortened life and a Flexspline fatigue failure. - * See the corresponding pages of each series for ratcheting torque values. - * Ratcheting torque is affected by the stiffness of the housing to be used when installing the circular spline. Contact us for details of the ratcheting torque. When ratcheting occurs, the teeth may not be correctly engaged and become out of alignment as shown in Figure 097-1. Operating the drive in this condition will cause vibration and damage the flexspline. Once ratcheting occurs, the teeth wear excessively and the ratcheting torque may be lowered. "Dedoidal" condition. sales@electromate.com ### **Torsional Stiffness** Stiffness and backlash of the drive system greatly affects the performance of the servo system. Please perform a detailed review of these items before designing your equipment and selecting a model number. #### ■ Stiffness Fixing the input side (wave generator) and applying torque to the output side (flexspline) generates torsion almost proportional to the torque on the output side. Figure 098-1 shows the torsional angle at the output side when the torque applied on the output side starts from zero, increases up to +To and decreases down to -To. This is called the "Torque - torsion angle diagram," which normally draws a loop of 0 - A - B - A' - B' - A. The slope described in the "Torque - torsion angle diagram" is represented as the spring constant for the stiffness of the Harmonic Drive gear (unit: Nm/rad). As shown in Figure 098-2, this "Torque - torsional angle diagram" is divided into 3 regions, and the spring constants in the area are represented by K1, K2 and K3. $K_1 \ \cdots \ The \ spring \ constant \ when \ the \ torque \ changes \ from \ [zero] \ to \ [T_1]$ K_2 The spring constant when the torque changes from
[T₁] to [T₂] K_3 The spring constant when the torque changes from [T₂] to [T₃] See the corresponding pages of each series for values of the spring constants (K1, K2, K3) and the torque-torsional angles $(T_1, T_2, -\theta_1, \theta_2).$ #### **■** Example for calculating the torsion angle The torsion angle (θ) is calculated here using CSG-32-100-GH as an example. T1 = 29 Nm T2 = 108 Nm K1 = 11 x 104 Nm/rad $K2 = 12 \times 10^4 \text{ Nm/rad}$ K3 = 6.7 x 104 Nm/rad θ 1=4.4 x 10-4 rad θ2=11.6 x 10-4 rad #### When the applied torque is T_1 or less, the torsion angle θ_{L1} is calculated as follows: When the load torque T_{L1}=6.0 Nm θ_{L1} $=T_{1.1}/K_1$ =6.0/6.7×104 =9.0×10⁻⁵ rad (0.31 arc min) #### When the applied torque is between T1 and T2, the torsion angle θ_{L2} is calculated as follows: When the load torque is Tu2=50 Nm $=\theta_1+(T_{12}-T_1)/K_2$ =4.4×10-4 +(50-29)/11.0×10-4 =4.4×10-4 +1.9×10-4 =6.3×10⁻⁴ rad (2.17 arc min) #### When the applied torque is greater than T2, the torsion angle θ_{L3} is calculated as follows: When the load torque is TL3=178 Nm $=\theta_1+\theta_2+(T_{L3}-T_2)/K_3$ $=4.4\times10^{-4} + 11.6\times10^{-4} + (178-108)/12.0\times10^{-4}$ =4.4×10⁻⁴ +11.6×10⁻⁴+5.8×10⁻⁴ =2.18×10⁻³ rad (7.5 arc min) When a bidirectional load is applied, the total torsion angle will be 2 x θ_{LX} plus hysteresis loss. * The torsion angle calculation is for the gear component set only and does not include any torsional windup of the output shaft. #### Hvsteresis loss As shown in Figure 098-1, when the applied torque is increased to the rated torque and is brought back to [zero], the torsional angle does not return exactly back to the zero point This small difference (B - B') is called hysteresis loss. See the appropriate page for each model series for the hysteresis loss value. #### Torque - torsion angle diagram Figure 098-1 #### Spring constant diagram Figure 098-2 #### Backlash Hysteresis loss is primarily caused by internal friction. It is a very small value and will vary roughly in proportion to the applied load. Because HarmonicDrive® gearheads have zero backlash, the only true backlash is due to the clearance in the Oldham coupling, a self-aligning mechanism used on the wave generator. Since the Oldham coupling is used on the input, the backlash measured at the output is extremely small (arc-seconds) since it is divided by the gear reduction ratio. The primary component of the transmission error occurs twice per input revolution of the input. Therefore, the frequency generated by the transmission error is 2x the input frequency (rev / sec). If the resonant frequency of the entire system, including the HarmonicDrive® gear, is F=15 Hz, then the input speed (N) which would generate that frequency could be calculated with the formula Formula 099-1 $$N = \frac{15}{2} \cdot 60 = 450 \text{ rpm}$$ The resonant frequency is generated at an input speed of 450 rpm. How to the calculate resonant frequency of the system Formula 099-2 $$= \frac{1}{2\pi} \sqrt{\frac{K}{J}}$$ Formula variables Table 099-1 The resonant frequency of the Hz Nm/rad See pages of each series. Spring constant Load inertia kgm² ### Efficiency The efficiency will vary depending on the following factors: - Reduction ratio - Input speed - Load torque - Temperature - Lubrication condition (Type of lubricant and the quantity) ### **Product Sizing & Selection** In general, a servo system rarely operates at a continuous load and speed. The input rotational speed, load torque change and comparatively large torque are applied at start and stop. Unexpected impact torque may be applied. These fluctuating load torques should be converted to the average load torque when selecting a model number. As an accurate cross roller bearing is built in the direct external load support (output flange), the maximum moment load, life of the cross roller bearing and the static safety coefficient should also be checked. (Note) If HarmonicDrive® CSG-GH or CSG-GH series is installed vertically with the output shaft facing downward (motor mounted above it) and continuously operated in one direction under the constant load state, lubrication failure may occur. In this case, please contact us for details. #### ■ Application Motion Profile Review the application motion profile. Check the specifications shown in the figure below. #### Obtain the value of each application motion profile. Load torque Tn (Nm) Output rotational speed Normal operation pattern Starting (acceleration) Steady operation Stopping (deceleration) Maximum rotational speed Max. input rotational speed ni max (Restricted by motors) **Emergency stop torque** When impact torque is applied Required life L₁₀ = L (hours) #### ■ Flowchart for selecting a size Please use the flowchart shown below for selecting a size. Operating conditions must not exceed the performance ratinas. Calculate the average load torque applied on the output side from the load torque pattern: Tav (Nm). $$Tav = \sqrt[3]{\frac{n_1 \cdot t_1 \cdot |T_1|^3 + n_2 \cdot t_2 \cdot |T_2|^3 + \cdots \cdot n_n \cdot t_n \cdot |T_n|^3}{n_1 \cdot t_1 + n_2 \cdot t_2 + \cdots \cdot n_n \cdot t_n}}$$ Make a preliminary model selection with the following conditions. (See the ratings of each series) Calculate the average output speed: no *av* (rpm) $n_1 \cdot t_1 + n_2 \cdot t_2 + \cdots + n_n \cdot t_n$ $t_1 + t_2 + \cdots t_n$ Obtain the reduction ratio (R). A limit is placed on "ni max" by ni *max* no *max* ≧ R Calculate the average input rotational speed from the average output rotational speed (no av) and the reduction ratio (R): ni av (rpm) ni $av = no av \cdot R$ Calculate the maximum input rotational speed from the max. output rotational speed (no *max*) and the reduction ratio (R): ni max (rpm) ni $max = no max \cdot R$ model number satisfies the following condition from the ratings. Ni av ≦ Limit for average speed (rpm) Ni $max \leq$ Limit for maximum speed (rpm) OK Check whether T_1 and T_3 are equal to or less than the repeated peak torque specification. **OK** Check whether Ts is equal to or less than the the momentary torque Calculate (Ns) the allowable number of rotations during impact torque. 104 ·····N_S ≦ 1.0×10⁴ $2 \cdot \frac{n_S \cdot R}{1} \cdot t$ NG NG NG NG NG the operation conditions and model number OK Calculate the lifetime. $L_{10} = 7,000 \cdot \left(\frac{\text{Tr}}{\text{Tav}} \right)$ Check whether the calculated lifetime is equal to or more than the life of the wave generator (see Page 96). OK The model number is confirmed (constant velocity) $T_2 = 320 \text{ Nm}, t_2 = 3 \text{ sec}, n_2 = 14 \text{ rpm}$ Stopping (deceleration) $T_3 = 200 \text{ Nm}, t_3 = 0.4 \text{ sec}, n_3 = 7 \text{ rpm}$ Dwell Idle $T_4 = 0 \text{ Nm}$, $t_4 = 0.2 \text{ sec}$, $t_4 = 0 \text{ rpm}$ Maximum rotational speed Max. output rotational speed no max = 14 rpm Max. input rotational speed ni max = 1800 rpm (Restricted by motors) Emergency stop torque When impact torque is applied $T_s = 500 \text{ Nm}$, $t_s = 0.15 \text{ sec}$, $n_s = 14 \text{ rpm}$ Required life $L_{10} = 7000 \text{ (hours)}$ NG NG NG NG NG and model the operation Calculate the average load torque applied on the output side of the Harmonic Drive® gear from the load torque pattern: Tav (Nm). $$Tav = 3\sqrt{\frac{7 \text{ rpm} \cdot 0.3 \text{ sec} \cdot |400\text{Nm}|^3 + 14 \text{ rpm} \cdot 3 \text{ sec} \cdot |320\text{Nm}|^3 + 7 \text{ rpm} \cdot 0.4 \text{ sec} \cdot |200\text{Nm}|^3}{7 \text{ rpm} \cdot 0.3 \text{ sec} + 14 \text{ rpm} \cdot 3 \text{ sec} + 7 \text{ rpm} \cdot 0.4 \text{ sec}}}$$ Make a preliminary model selection with the following conditions. Tav = 319 Nm \le 620 Nm (Limit for average torque for model number CSF-45-120-GH: See the ratings on Page 87.) Thus, CSF-45-120-GH is tentatively selected. Calculate the average output rotational speed: no av (rpm) no **av** = $$\frac{7 \text{ rpm} \cdot 0.3 \text{ sec} + 14 \text{ rpm} \cdot 3 \text{ sec} + 7 \text{ rpm} \cdot 0.4 \text{ sec}}{0.3 \text{ sec} + 3 \text{ sec} + 0.4 \text{ sec} + 0.2 \text{ sec}} = 12 \text{ rpm}$$ Obtain the reduction ratio (R). Calculate the average input rotational speed from the average output rotational speed (no *av*) and the reduction ratio (R): ni *av* (rpm) Calculate the maximum input rotational speed from the maximum output rotational speed (no *max*) and the reduction ratio (R): ni *max* (rpm) 14 rpm = 128.6 ≧ 120 ni **av** = 12 rpm·120 = 1440 rpm ni *max* = 14 rpm·120 = 1680 rpm Check whether the preliminary selected model number satisfies the following condition from the ratings. Ni av = 1440 rpm \leqq 3000 rpm (Max average input speed of size 45) Ni max = 1680 rpm \leqq 3800 rpm (Max input speed of size 45) Check whether T₁ and T₃ are equal to or less than the repeated peak torque specification. T1 = 400 Nm \leq 823 Nm (Limit of repeated peak torque of size 45) T3 = 200 Nm \leq 823 Nm (Limit of repeated peak torque of size 45) Check whether Ts is equal to or less than the $T_S = 500 \text{ Nm} \le 1760 \text{ Nm}$ (Limit for momentary torque of size 45) Calculate the allowable number (Ns) rotation during impact torque and confirm $\le 1.0 \times 10^{\circ}$ $$N_{S} = \frac{10^{4}}{2 \cdot \frac{14 \text{ rpm} \cdot 120}{60}} = 1190 \le 1.0 \times 10^{4}$$ $$2 \cdot \frac{14 \text{ rpm} \cdot 120}{60} \cdot 0.15 \text{ sec}$$ Calculate the lifetime. $$L_{10} = 7000 \cdot \left(\frac{402 \text{ Nm}}{319 \text{ Nm}} \right)^3 \cdot \left(\frac{2000 \text{ rpm}}{1440 \text{ rpm}} \right) \text{ (hours)}$$ Check whether the calculated life is equal to or more than the life of the wave generator (see Page 96). L_{10} =19,457 hours \geqq 7000 (life of the wave generator: L₁₀) The selection of model number CSF-45-120-GH is confirmed from the above calculations. Toll Free Fax: (877) SERV099 ### **NOTES** # Harmonic Planetary Rear Units **HPF Series - Hollow Shaft** **HPG Series - Input
Shaft** # Harmonic Planetary[®] **HPF Hollow Shaft Gear Unit** #### Size 25, 32 #### **Peak torque** Size 25: 100Nm, Size 32: 220Nm #### **Reduction ratio** #### Low backlash Standard: <3 arc-min Low Backlash for Life Innovative ring gear inherently compensates for interference between meshing parts, ensuring consistent, low backlash for #### Inside diameter of the hollow shaft Size 25: 025mm Size 32: 030mm #### **High Load Capacity Output Bearing** A Cross Roller bearing is integrated with the output flange to provide high moment stiffness, high load capacity and precise bollow shaft planetary features the same superior performance and specifications as the HPG line. The large hollow shaft allows cables, pipes, or shafts to pass directly through the axis of rotation, simplifying the design and improving reliability. Outline Dimensions......107 Product Sizing & Selection.....108-109 # HPF - 25 A - 11 - F0 U1 - SP1 | ľ | | | ·i | | ······································ | | |--|----------|-----------------|-----------------|----------------------|--|---| | Model Name | Size | Design Revision | Reduction Ratio | Output Configuration | Input Configuration | Options | | HarmonicPlanetary* HPF Hollow Shaft | 25
32 | Α | 11 | F0: Flange output | U1: Hollow shaft | None: Standard item SP: Special specification | ### Gearhead Construction Figure 104-1 Mounting bolt hole Mounting pilot Cross roller bearing Angular bearing Input side oil seal Output side oil sea Input rotational direction Input flange (Pulley can be connected) Output flange ### Rating Table The HPF hollow shaft planetary gear features a large hollow shaft that allows cables, shafts, ball screws or lasers to pass directly through the axis of rotation. | Size | Ratio | Rated Torque
at 2000 rpm *1 | Rated Torque
at 3000 rpm *2 | Limit for Repeated Peak Torque *3 Limit for Momentary Torque *4 | | Max.
Average
Input Speed *5 | Max. Input
Speed *6 | Input
Moment of Inertia | Mass | |------|-------|--------------------------------|--------------------------------|---|-----|-----------------------------------|------------------------|----------------------------|------| | | | Nm | Nm | Nm | Nm | rpm | rpm | ×10⁴kgm² | kg | | 25 | 11 | 48 | 21 | 100 | 170 | 3000 | 5600 | 1.63 | 3.8 | | 32 | 11 | 100 | 44 | 220 | 450 | 3000 | 4800 | 3.84 | 7.2 | - *1: Rated torque is based on L10 life of 20,000 hours when input speed is 2000 rpm - *2: Rated torque is based on L10 life of 20,000 hours when input speed is 3000 rpm - *3: The limit for torque during start and stop cycles. - *4: The limit for torque during emergency stops or from external shock loads. Always operate below this value. Calculate the number of permissible events to ensure it meets required operating conditions. - *5: Max value of average input rotational speed during operation. - *6: Maximum instantaneous input speed. ### **Performance Table** Table 105-2 | 0! | Datie | Transmission accuracy *1 | Repeatability *2 | Starting torque *3 | Backdriving torque *4 | No-load running torque *5 | | |------|-------|--------------------------|------------------|--------------------|-----------------------|---------------------------|--| | Size | Ratio | arc min | arc sec | Ncm | Nm | Nem | | | 25 | 11 | 4 | ±15 | 59 | 6.5 | 78 | | | 32 | 11 | 4 | ±15 | 75 | 8.3 | 105 | | *1: Accuracy values represent the difference between the theoretical angle and the actual angle of output for any given input. The values in the table are maximum values. θ₁ :Input angle : Actual output angle : Gear reduction ratio θ er = θ_2 - The repeatability is measured by moving to a given theoretical position seven times, each time approaching from the same direction. The actual position of the output shaft is measured each time and repeatability is calculated as the 1/2 of the maximum difference of the seven data points. Measured values are indicated in angles (arc-sec) prefixed with "±". The values in the table are maximum values. Starting torque is the torque value applied to the input side at which the output first starts to rotate. The values in the table are maximum values. | | Table 105-3 | |---------------------------------------|-------------| | Load | No load | | HPF speed reducer surface temperature | 25°C | *4: Backdriving torque is the torque value applied to the output side at which the input first starts to rotate. The values in the table are maximum | | Table 105- | |---------------------------------------|------------| | Load | No load | | HPF speed reducer surface temperature | 25°C | *5: No-load running torque is the torque required at the input to operate the gearhead at a given speed under a no-load condition. The values in the | table are average values. | T.I. 405.5 | |---------------------------------------|-------------| | | Table 105-5 | | Input speed | 3000 rpm | | Load | No load | | HPF speed reducer surface temperature | 25°C | ### **Backlash and Torsional Stiffness** Table 106-1 | ■ HPF Hollow Shaft Unit | | | | | | |-------------------------|----------|---|--|--|--| | | Backlash | Torsion angle in one direction at TR X 0.15 | Torsional stiffness | | | | Ratio | | D | A/B | | | | | arc min | arc min | Nm/arc min | | | | 11 | 3.0 | 2.0 | 16.66 | | | | 11 | 3.0 | 1.7 | 34.3 | | | | | | Ratio Backlash arc min 11 3.0 | Ratio Torsion angle in one direction at TR X 0.15 D D arc min arc min 11 3.0 2.0 | | | #### Torsional stiffness curve With the input of the gear locked in place, a torque applied to the output flange will torsionally deflect in proportion to the applied torque. We generate a torsional stiffness curve by slowly applying torque to the output in the following sequence: (1) Clockwise torque to TR, (2) Return to Zero, (3) Counter-Clockwise torque to -TR, (4) Return to Zero and (5) again Clockwise torque to TR. A loop of (1) > (2) > (3) > (4) > (5) will be drawn as in Fig. 106-1. The torsional stiffness in the region from "0.15 x TR" to "TR" is calculated using the average value of this slope. The torsional stiffness in the region from "zero torque" to "0.15 x TR" is lower. This is caused by the small amount of backlash plus engagement of the mating parts and loading of the planet gears under the initial torque applied. #### Calculation of total torsion angle The method to calculate the total torsion angle (average value) in one direction when a load is applied from a no-load state. Calculation formula A B Total torsion angle See Fig. 106-1, Torsion angle in one direction D at output torque x 0.15 torque Table 106-1 Т Load torque Output torque x 0.15 torque See Fig. 106-1 See Fig. 106-1, Torsional stiffness A/B Table 106-1 #### Backlash (Hysteresis Loss) The vertical distance between points (2) & (4) in Fig. 106-1 is called a hysteresis loss. The hysteresis loss between "Clockwise load torque TR" and "Counter Clockwise load torque -TR" is defined as the backlash of the HPF series. The backlash of the HPF series is less than 3 arc-min. Torque-torsion angle diagram Torsion angle (1) (5) ш -TR×0.15 Δ Torque Δ Hysteresis loss = Backlash TR×0.15 ш TR: Rated output torque A/B: Torsional stiffness (3) Torsion angle in one direction at TRX0.15 ### **Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. For the specifications of the input side bearing of the hollow shaft gear unit, refer to page 145. #### **HPF-25 Outline Dimensions** (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. *1: The inside diameter of the hollow shaft rotates with the input shaft (high speed). Use these holes for installing a sleeve which rotates with the output side. (These holes are not for mounting the load). #### **HPF-32 Outline Dimensions** ### Sizing & Selection To fully utilize the excellent performance of the HPF HarmonicPlanetary® gearheads, check your operating conditions and, using the flowchart, select the appropriate size gear for your application. Check your operating conditions against the following application motion profile and select a suitable size based on the flowchart shown on the right. Also check the life and static safety coefficient of the cross roller bearing. #### Flowchart for selecting a size Please use the flowchart shown below for selecting a size. Operating conditions must not exceed the performance #### Application motion profile Review the application motion profile. Check the specifications shown in the figure below. #### Obtain the value of each application motion profile Load torque T₁ to T_n (Nm) t1 to tn (sec) Output rotational speed n1 to nn (rpm) Normal operation pattern T1, t1, n1 Starting (acceleration) Steady operation (constant velocity) T2, t2, n2 Stopping (deceleration) T₃, t₃, n₃ T4, t4, n4 Maximum rotational speed Max. output rotational speed no $max \ge n1$ to nnMax. input rotational speed ni max n1×R to nn×R (Restricted by motors) R: Reduction ratio Emergency stop torque When impact torque is applied Required life L₁₀ = L (hours) Refer to the Caution note below. #### Caution If any of the following conditions exist, please consider selecting the next larger speed reducer, reduce the operating loads or reduce the operating speed. If this cannot be done, please contact Harmonic Drive LLC. Exercise caution especially when the duty cycle is close to i) Actual average load torque (Tav) > Permissible maximum value of average load torque or ii)
Actual average input rotational speed (ni av) > Permissible average input rotational speed (nr), iii) Gearhead housing temperature > 70° C. Load torque Tn (Nm) Time tn (sec) Output rotational speed nn (rpm) Normal operation pattern Starting (acceleration) $T_1 = 70 \text{ Nm}$, $t_1 = 0.3 \text{ sec}$, $n_1 = 60 \text{ rpm}$ Steady operation (constant velocity) $T_2 = 18 \text{ Nm}$. $t_2 = 3$ sec. $n_2 = 120 \text{ rpm}$ Stopping (deceleration) T₃ = 35 Nm, $t_3 = 0.4 \text{ sec}, \quad n_3 = 60 \text{ rpm}$ Dwell $T_4 = 0 \text{ Nm}$. $t_4 = 5 \text{ sec},$ $n_4 = 0 \text{ rpm}$ Maximum rotational speed Max. output rotational speed Max. input rotational speed no *max* = 120 rpm ni *max* = 5,000 rpm (Restricted by motors) Emergency stop torque When impact torque is applied $T_s = 120 \text{ Nm}$ Required life $L_{10} = 30,000 \text{ (hours)}$ Calculate the average load torque applied to the output side based on the application motion profile. Calculate the average output speed based on the application motion profile. | 60rpm| • 0.3sec + | 120rpm| • 3sec + | 60rpm| • 0.4sec + | 0rpm| • 5sec 0.3 sec + 3 sec + 0.4 sec + 5 sec Make a preliminary model selection with the following conditions. Tav = 30.2 Nm \leq 48 Nm. (HPF-25A-11 is tentatively selected based on the average load torque (see the rating table on page 105) of size 25 and reduction ratio of 11.) Determine a reduction ratio (R) from the maximum output speed (no max) and maximum input speed (ni max). 5,000 rpm = 41.7 ≧ 11 120 rpm Calculate the maximum input speed (ni max) from the maximum output speed (no max) and reduction ratio (R): ni max = 120 rpm • 11 = 1,320 rpm Calculate the average input speed (ni av) from the average output speed (no av) and reduction ratio (R): ni av = 46.2 rpm+11= 508 rpm \leqq Max average input speed of size 25 3,000 rpm Check whether the maximum input speed is less than the values specified in the rating table. ni max = 1,320 rpm $\leqq 5,600$ rpm (maximum input speed of size 25) Check whether T₁ and T₃ are within peak torques (Nm) on start and stop in the rating table. T_1 = 70 Nm \leqq 100 Nm (Limit for repeated peak torque, size 25) T_3 = 35 Nm \leqq 100 Nm (Limit for repeated peak torque, size 25) Check whether Ts is equal to or less than limit for momentary torque (Nm) in the rating table. Ts = 120 Nm \leq 170 Nm (momentary max. torque of size 25) Calculate life and check whether the calculated life meets the requirement. $$L_{10} = 20{,}000 \cdot \\ \\ \hline \left(\frac{21\,\text{Nm}}{30.2\,\text{Nm}} \right)^{1003} \cdot \\ \\ \hline \left(\frac{3{,}000\,\text{rpm}}{508\,\text{rpm}} \right) = 35{,}182\,\text{(hours)} \geqq 30{,}000\,\text{(hours)}$$ The selection of model number HPF-25A-11 is confirmed from the above calculations. Review the operation conditions, size and reduction ratio. # Harmonic Planetary® **HPG Input Shaft** #### Size 11, 14, 20, 32, 50, 65 #### Peak torque 3.9Nm - 2200Nm #### **Reduction ratio** Single Stage: 3:1 to 9:1, Two Stage: 11:1 to 50:1 #### **High efficiency** **Up to 97%** #### Low backlash Standard: <3 arc-min Optional: <1 arc-min Low Backlash for Life Innovative ring gear inherently compensates for interference between meshing parts, ensuring consistent, low backlash for the life of the gearhead. #### **High Load Capacity Output Bearing** A Cross Roller bearing is integrated with the output flange to provide high moment stiffness, high load capacity and precise positioning accuracy. # 20 A - 05 - BL3 #### **Gearhead Construction** # Rating Table Table 111-1 | | | | | | 11.717 | 11. 11.6 | | lable 111-1 | |----------|-------|-----------------|------------------|------------------|----------------------------|------------------------|-------------------------------|------------------------| | | | Rated | Rated | Limit for | Limit for
Repeated Peak | Limit for
Momentary | Max. Average
Input Speed*5 | Max. Input
Speed *6 | | Size | Ratio | Torque L10*1 | Torque L50*1 | Average Torque*2 | Torque*3 | Torque*4 | input speed - | Speed - | | | | Nm | Nm | Nm | Nm | Nm | rpm | rpm | | | 5 | 2.5 | 5 | 5.0 | 7.8 | | | | | | 9 | 2.5 | 3.9 | 3.9 | 3.9 | | | | | 11 | 21 | 3.4 | 6 | | | 20 | 3000 | 10000 | | | 37 | 3.4 | 6 | 6.0 | 9.8 | | | | | | 45 | 3.4 | 6 | | | | | | | | 3 | 2.9 | 9 6.4 6.4 15 | | 37 | | 5000 | | | | 5 | 5.9 | 13 | 13 | | | | | | | 11 | 7.8 | 15 | | | | | | | 14 | 15 | 9.0 | 15 | | 00 | 50 | 3000 | 0000 | | | 21 | 8.8 | 15 | 15 | 23 | 56 | | 6000 | | | 33 | 10 | 15 | | | | | | | | 45 | 10 | 15 | | | | | | | | 3 | 8.8 | 17 | 19 | 64 | 124 | | 4000 | | | 5 | 16 | 35 | 35 | | | | | | | 11 | 20 | 45 | 45 | | | 3000 | | | 20 | 15 | 24 | 53 | 53
55 | 100 | 0.17 | | 6000 | | | 21 | 25 | 55 | | 100 | 217 | | 6000 | | | 33 | 29 | 60 | | | | | | | | 45 | 29 | 60 | 60 | | | | | | | 3 | 31 | 60 71 2 | | 225 | 507 | | 3600 | | | 5 | 66 | 150 | 150 | | 650 | 3000 | | | | 11 | 88 | 170 | | | | | | | 32 | 15 | 92 | 170 | 170 | 000 | | | 0000 | | | 21 | 98 | 170 | | 300 | | | 6000 | | | 33 | 108 | 200 | 000 | | | | | | | 45 | 108 | 200 | 200 | | | | | | | 3 | 97 | 160 | 195 | 657 | 1200 | | 3000 | | | 5 | 170 | 290 | 340 | | | | | | | 11 | 200 | 340 | 400 | | | | | | 50 | 15 | 230 | 400 | 450 | 850 | 1050 | 2000 | 4500 | | | 21 | 260 | 450 | | 850 | 1850 | | 4500 | | | 33 | 270 | 470 | 500 | | | | | | | 45 | 270 | 500 | | | | | | | | 4 | 500 | 870 900 | | | | | 2500 | | | 5 | 530 | 900 | 1000 | | | | | | | 12 | 600 | 1020 | 1100 | 2200 | | | | | 65°7 | 15 | 730 | 1260 | 1300 | 2200 | 4500 | 0000 | | | 03 | 20 | 800 | 1370 | 1500 | | 4500 | 2000 | 3000 | | | 25 | 850 | 1470 | 1500 | | | | | | | 40 | 640 | 1320 | 1300 | 1900 | | | | | | 50 | 750 | 1650 | 1500 | 2200 | | | | | 1. Datad | | based on life a | f 00 000 have at | | | | | | ^{*1:} Rated torque is based on life of 20,000 hours at max average input speed. *2: Average load torque calculated based on the application motion profile must not exceed values shown in the table. See p. 118. ^{*3:} The limit for torque during start and stop cycles. ^{*4:} The limit for torque during emergency stops or from external shock loads. Always operate below this value. ^{*5:} Max value of average input rotational speed during operation. ^{*6:} Maximum instantaneous input speed. ^{*7:} Size 65 is built-to-order. #### **Performance Table** | | | Accuracy *1 | Repeatability *2 | Starting torque *3 | Backdriving torque *4 | No-load running torque *5 | | |-------|-------|-------------|------------------|--------------------|-----------------------|---------------------------|--| | Model | Ratio | arc min | arc sec | Ncm | Nm | Ncm | | | | 5 | | | 7.9 | 0.40 | 8.9 | | | | 9 | | | 7.6 | 0.68 | 6.3 | | | 11 | 21 | 5 | ±30 | 6.8 | 1.4 | 5.2 | | | '' | 37 | • | | 5.5 | 2.0 | 4.8 | | | | 45 | | | 5.3 | 2.4 | 4.7 | | | | 3 | | | 22 | 0.66 | 26 | | | | 5 | | | 17 | 0.83 | 15 | | | | 11 | | | 16 | 1.8 | 10 | | | 14 | 15 | 4 | ±20 | 15 | 2.3 | | | | | 21 | | | 13 | 2.9 | 8.2 | | | | 33 | | | | 3.8 | | | | | 45 | | | 11 | 4.8 | 7.3 | | | | 3 | | | 46 | 1.4 | 61 | | | | 5 | | | 34 | 1.7 | 39 | | | | 11 | | 1 | 30 | 3.3 | 26 | | | 20 | 15 | 4 | ±15 | 27 | 4.0 | 22 | | | | 21 | | | 24 | 5.1 | 20 | | | | 33 | | | 21 | 7.1 | 17 | | | | 45 | | 20 | 8.9 | 16 | | | | | 3 | | | 92 | 2.8 | 146 | | | | 5 | | | 69 | 3.5 | 100 | | | | 11 | | | 63 | 6.9 | 66 | | | 32 | 15 | 4 | ±15 | 61 | 9.1 | 57 | | | | 21 | | | 58 | 12 | 52 | | | | 33 | | | 52 | 17 | 42 | | | | 45 | | | 46 | 21 | 41 | | | | 3 | | | 197 | 5.9 | 300 | | | | 5 | | | 140 | 7.0 | 180 | | | | 11 | | | 110 | 12 | 110 | | | 50 | 15 | 3 | ±15 | 100 | 15 | 97 | | | | 21 | | | 98 | 21 | 90 | | | | 33 | | | 88 | 29 | 74 | | | | 45 | | | 83 | 37 | 70 | | | | 4 | | | 406 | 16 | 576 | | | | 5 | | | 358 | 18 | 517 | | | | 12 | | | 243 | 29 | 341 | | | 65 | 15 | 3 | ±15 | 228 | 34 | 311 | | | 0.5 | 20 | | -10 | 213 | 43 | 282 | | | | 25 | | | 202 | 51 | 262 | | | | 40 | | | 193 | 77 | 230 | | | | 50 | | | 188 | 94 | 219 | | *1: Accuracy values represent the difference between the theoretical angle and the actual angle of output for any given input. The values in the table are maximum values. θer : Accuracy θ_1 : Input angle : Actual output angle R : Reduction ratio *3: Starting torque is the torque value applied to the input side at which the output first starts to rotate. The values in the table are maximum values. | | Table 112-2 | |---------------------------------------|-------------| | Load | No load | | HPG speed reducer surface temperature | 25°C | *4: Backdriving torque is the torque value applied to the output side at which the input first starts to rotate. The values in the table are Note: Never rely on these values as a margin in a system that must hold an external load. A brake must be used where back driving is not permissible. | | lable 112-3 | |---------------------------------------|-------------| | Load | No load | | HPG speed reducer surface temperature | 25°C | *5: No-load running torque is the torque required at the input to operate the gearhead at a given speed under a no-load condition. The values in the table are average values. | Input speed | 3000 rpm | |---------------------------------------|----------| | Load | No load | | HPG speed reducer surface temperature | 25°C | The repeatability is measured by moving to a given theoretical position seven times, each time approaching from the same direction. The actual position of the output shaft is measured each time and repeatability is calculated as the 1/2 of the maximum difference of the seven data points. Measured values are indicated in angles (arc-sec) prefixed with " \pm ". The values in the table are maximum values. ELECTROMATE #### **Backlash and Torsional Stiffness** | ■ Input Shaft Gear Unit - Standard backlash (BL3) (≤ 3 arc-min) | | | | | |---|----------------------------------|----------|---
---------------------| | Size | Ratio | Backlash | Torsion angle in one direction at TR X 0.15 | Torsional stiffness | | | | arc min | arc min | Nm/arc min | | П | 5 | | 2.5 | 0.59 | | 11 | 21
37
45 | 3 | 3.0 | 0.64 | | | 3 | | 2.2 | 1.27 | | 14 | 11
15
21
33
45 | 3 | 2.7 | 1.37 | | | <u>3</u>
5 | | 1.5 | 4.9 | | 20 | 11
15
21
33
45 | 3 | 2.0 | 5.39 | | | 3 | | 1.3 | 16.66
19.6 | | 32 | 11
15
21
33
45 | 3 | 1.7 | 21.56 | | | <u>3</u>
5 | | 1.3 | 82.71
107.8 | | 50 | 11
15
21
33
45 | 3 | 1.7 | 137.2 | | | 4 5 | | 1.3 | 270 | | 65 | 12
15
20
25
40
50 | 3 | 1.7 | 362.6 | | _ " | Input Shaft Gear Unit - Reduced backlash (BL1) (≤ 1 arc-min) Torsion angle in one | | | | | | |------|--|----------|------------------------------------|---------------------|--|--| | Size | Ratio | Backlash | direction at T _R X 0.15 | Torsional stiffness | | | | Size | Ralio | | D | A/B | | | | | | arc min | arc min | Nm/arc min | | | | 11 | | n | ot available | | | | | | 3 5 | | 1.1 | 1.27 | | | | 14 | 9
21
33
45 | 1 | 1.7 | 1.37 | | | | | <u>3</u>
5 | | 0.6 | 4.9 | | | | 20 | 11 | 1 | 1.1 | 5.39 | | | | | <u>3</u>
5 | | 0.5 | 16.66
19.6 | | | | 32 | 11
15
21
33
45 | 1 | 1.0 | 21.56 | | | | | <u>3</u>
5 | | 0.5 | 82.71
107.8 | | | | 50 | 11
15
21
33
45 | 1 | 1.0 | 137.2 | | | | | <u>4</u>
5 | | 0.5 | 270 | | | | 65 | 12
15
20
25
40
50 | 1 | 1.0 | 362.6 | | | #### Torsional stiffness curve With the input of the gear locked in place, a torque applied to the output flange will torsionally deflect in proportion to the applied torque. We generate a torsional stiffness curve by slowly applying torque to the output in the following sequence: (1) Clockwise torque to TR, (2) Return to Zero, (3) Counter-Clockwise torque to -TR, (4) Return to Zero and (5) again Clockwise torque to TR. A loop of (1) > (2) > (3) > (4) > (5) will be drawn as in Fig. 113-1. The torsional stiffness in the region from "0.15 x TR" to "TR" is calculated using the average value of this slope. The torsional stiffness in the region from "zero torque" to "0.15 x TR" is lower. This is caused by the small amount of backlash plus engagement of the mating parts and loading of the planet gears under the initial #### Calculation of total torsion angle The method to calculate the total torsion angle (average value) in one direction when a load is applied from a no-load state. #### Backlash (Hysteresis loss) Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 The vertical distance between points (2) & (4) in Fig. 113-1 is called a hysteresis loss. The hysteresis loss between "Clockwise load torque TR" and "Counter Clockwise load torque -TR" is defined as the backlash of the HPG series. The backlash of the HPG series is less than 3 arc-min (1 arc-min or less available for sizes 14-65). www.electromate.com sales@electromate.com # **Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. For the specifications of the input side bearing refer to page 145. #### **HPG-11 Outline Dimensions** Figure 114-1 56 (Unit: mm) [Reduction Ratio = 5, 9] 27.5 13.5 15 2.2 0.5 16 11 3 10 10 Ø6 h7 Ø5 H7 Ø28 h8 Ø39.5 024 C0.5 C0.5 P, 3-M4×6 4-M3X6 (PCD 34) Output flange Detail P 20 Recommended clearance dimension 15 for customer's part mounted to the for customer's part mounted to the output flange (Note) When using a gearhead with an output flange, it is recommended for the customer to design clearance between the part mounted on the **Ø**24 0.4 (Min.0.2) Ø10 h7 output flange and the housing face as shown in the figure on the left. The clearance is needed because the distance between the output 229 7.5 -0.1 clearance 0.5 or more CÓ.5 R0.4 flange and the oil seal (non-rotating) is small (min. 0.2mm). (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. #### **HPG-14 Outline Dimensions** #### **HPG-20 Outline Dimensions** # **Outline Dimensions** Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions. For the specifications of the input side bearing, refer to page 145. #### **HPG-32 Outline Dimensions** #### **HPG-50 Outline Dimensions** #### **HPG-65 Outline Dimensions** Figure 117-[Reduction Ratio = 4, 5] (Unit: mm) 57 197.5 2-M10X20 12 117.5 80 □230 *¹₃ 1.5 64 52 65 16 h9 午 090 100.5 Ø214 Ø168 020 Ø65 C0.5 M10X20 6-M16X24 165 22 h9 130 110 Ø80 h7 Ø168 M16x35 C1 (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. Figure 117-2 (Unit: mm) [Reduction Ratio = 12, 15, 20, 25, 40, 50] 324.5 57 267.5 2-M10X20 12 187.5 80 □230 ^{*1}₃ 134 52 1.5 7H 09Ø Ø50 Ø65 Ø168 C0.5 Ø214 M10X20 6-M16X24 165 130 110 Ø80 h7 0168 M16x35 R0.4 (Note) The dimension tolerances that are not specified vary depending on the manufacturing method. Please check the confirmation drawing or contact us for dimension tolerances not shown on the drawing above. www.electromate.com sales@electromate.com Check your operating conditions against the following application motion profile and select a suitable size based on the flowchart shown on the right. Also check the life and static safety coefficient of the cross roller bearing and input side main bearing (input shaft type only). #### Flowchart for selecting a size Please use the flowchart shown below for selecting a size. Operating conditions must not exceed the performance #### Application motion profile Review the application motion profile. Check the specifications shown in the figure below. #### Obtain the value of each application motion profile Load torque T₁ to T_n (Nm) t1 to tn (sec) Output rotational speed n1 to nn (rpm) Normal operation pattern Starting (acceleration) T1, t1, n1 Steady operation (constant velocity) T2, t2, n2 Stopping (deceleration) T3, t3, n3 Dwell T4. t4. n4 Maximum rotational speed Max. output rotational speed no $max \ge n1$ to n_n Max. input rotational speed ni max n1×R to nn×R (Restricted by motors) R: Reduction ratio **Emergency stop torque** When impact torque is applied Required life L₁₀ = L (hours) Check whether the maximum input speed is equal to or less than the values in the rating table. ni $max \leq maximum$ input speed (rpm) Check whether T_1 and T_3 are equal to or less than the limit for repeated peak torque (Nm) in the rating table. Check whether Ts is less than the limit for momentary torque (Nm) in the rating table. Calculate the life and check whether it meets the specification Tr: Rated torque nr: Max. average input speed nr L₁₀=20,000 (Hour) The model number is confirmed. # the operation conditions, size and reduction ratio. Review If any of the following conditions exist, please consider selecting the next larger speed reducer, reduce the operating loads or reduce the operating speed. If this cannot be done, please contact Harmonic Drive LLC. Exercise caution especially when the duty cycle is close to i) Actual average load torque (Tav) > Limit for average torque or ii) Actual average input rotational speed (ni av) > Maximum average input speed (nr), iii) Gearhead housing temperature > 70°C. Load torque Tn (Nm) Time tn (sec) Output rotational speed nn (rpm) Normal operation pattern Starting (acceleration) $T_1 = 70 \text{ Nm}$, $t_1 = 0.3 \text{ sec}, \quad n_1 = 60 \text{ rpm}$ Steady operation (constant velocity) $T_2 = 18 \text{ Nm}$. $t_2 = 3 \text{ sec}, \quad n_2 = 120 \text{ rpm}$ Stopping (deceleration) T₃ = 35 Nm, $t_3 = 0.4 \text{ sec}, \quad n_3 = 60 \text{ rpm}$ $T_4 = 0 Nm$ Dwell $t_4 = 5 \text{ sec}, \quad n_4 = 0 \text{ rpm}$ Maximum rotational speed Max. output rotational speed no max = 120 rpmMax. input rotational speed ni max = 5,000 rpm(Restricted by motors) **Emergency stop torque** When impact torque is applied $T_s = 180 \text{ Nm}$ Required lifespan $L_{10} = 30,000 \text{ (hours)}$ $Calculate \ the \ average \ load \ torque \ applied \ on \ the \ output \ side \ based \ on \ the \ application \ motion \ profile: \ Tav \ (Nm).$ Calculate the average output speed based on the application motion profile: no av (rpm) $\mid 60\text{rpm} \mid \cdot 0.3\text{sec} + \mid 120\text{rpm} \mid \cdot 3\text{sec} + \mid 60\text{rpm} \mid \cdot 0.4\text{sec} + \mid 0\text{rpm} \mid \cdot 5\text{sec}$ 0.3sec+3sec+0.4sec+5sec Make a preliminary model selection with the following conditions. Tav = 30.2Nm ≤ 60 Nm. (**HPG-20A-33** is tentatively selected based on the average load torque (see the rating table on page 111) of size 20 and reduction ratio of 33.) Refer to the Caution note at the bottom of page 118. Determine a reduction ratio (R) from the maximum output speed (no max) and maximum input speed (ni max). 5,000 rpm = 41.7 ≧ 33 Calculate the maximum input speed (ni max) from the maximum output speed (no max) and reduction ratio (R): ni max = 120 rpm • 33 = 3,960 rpm Calculate the average input rotational speed (ni av) from the average output speed (no av) and reduction ratio (R): ni av = 46.2 rpm \cdot 33= 1,525 rpm \leq Max. average input speed of size 20 3,000 (rpm) Check whether the maximum input speed is equal to or less than the values specified in the rating table. ni $max = 3,960 \text{ rpm} \le 6,000 \text{ rpm}$ (maximum input rotational speed of size 20) Check whether T₁ and T₃ are less than the peak torques (Nm) on start and stop in the rating table. T_1 = 70 Nm \leq 100 Nm (Limit for repeated torque, size 20) T_3 = 35 Nm \leq 100 Nm (Limit for repeated torque, size 20) Check whether Ts is equal to or less than the
values of the momentary max. torque (Nm) in the rating table. Ts = 180 Nm ≤ 217 Nm (momentary max. torque of size 20) ОК Calculate life and check whether the calculated life meets the requirement. $$L_{10} = 20,000 \cdot \left(\frac{29 \text{ Nm}}{30.2 \text{ Nm}} \right)^{10/3} \cdot \left(\frac{3,000 \text{ rpm}}{1,525 \text{ rpm}} \right) = 34,543 \text{ (hours)} \ge 30,000 \text{ (hours)}$$ | NOTES | |-------| #### Measurement condition | mododromone o | Table 122-1 | |------------------------|---| | Input rotational speed | HPGP / HPG / HPF / HPN:3000rpm
CSG-GH / CSF-GH:Indicated on each efficiency graph. | | Ambient temperature | 25°C | | Lubricant | Use standard lubricant for each model (See pages 151- 152 for details.) | #### **■** Efficiency compensated for low temperature Calculate the efficiency at an ambient temperature of 25°C or less by multiplying the efficiency at 25°C by the low-temperature efficiency correction value. Obtain values corresponding to an ambient temperature and to an input torque (TRi*) from the following graphs when calculating the low-temperature efficiency correction value. HPG HPF HPN Graph 122-1 #### CSG-GH CSF-GH Reduction ratio = 45 30 10 Graph 123-2 0.5 #### **Technical Data** ^{*1} Only one line is shown because the difference between the gearhead and a bearing assembled on the input side is small. HarmonicPlanetary ® HarmonicDrive *2 Only one line is shown because the difference between the gearhead and a bearing assembled on the input side is small. ^{*3} Only one line is shown because the difference between the gearhead and a bearing assembled on the input side is small. Gearhead & Input Shaft Unit $T_{\text{Ri}}\,$ Input torque corresponding to output torque --- Gearhead (standard item) Gearhead with D bearing (double sealed) ^{*1} Only one line is shown because the difference between the gearhead and a bearing assembled on the input side is small. Gearhead & Input Shaft Unit Size 50 100 50 40 30 20 10 10 --- Gearhead (standard item) Reduction ratio = 3, 5*2 #### HPG 100 Graph 128-1 ^{*2} Only one line is shown because the difference between the gearhead and a bearing assembled on the input side is small. 40 Reduction ratio = 21 30 Gearhead & Input Shaft Unit HPG 20 Input torque Nm ^{*3} Only one line is shown because the difference between the gearhead and a bearing assembled on the input side is small. TRI Input torque corresponding to output torque Size 50 RA3 Right Angle Gearhead HPG $T_{\mbox{\scriptsize Ri}}$ Input torque corresponding to output torque Size 14A :Gearhead HPN Input rotational speed ——— 500 rpm Size 20 : Gearhead CSG-GH CSF-GH ## Reduction ratio = 80 #### Reduction ratio = 100 #### Reduction ratio = 120 #### Reduction ratio = 160 Input rotational speed - — 500 rpm ----- 1000 rpm —— — 2000 rpm ----- 3500 rpm #### Reduction ratio = 80 #### Reduction ratio = 100 #### Reduction ratio = 120 #### Reduction ratio = 160 Input rotational speed -— 500 rpm ----- 1000 rpm —— — 2000 rpm — 3500 rpm #### Size 45 : Gearhead CSG-GH CSF-GH #### Reduction ratio = 50 #### Reduction ratio = 80 #### Reduction ratio = 100 #### Reduction ratio = 120 #### Reduction ratio = 160 Input rotational speed ——— 500 rpm ELECTROMATE ----- 1000 rpm —— — 2000 rpm — 3500 rpm #### Reduction ratio = 120 Input rotational speed 500 rpm ----- 1000 rpm #### Reduction ratio = 100 #### Reduction ratio = 160 2000 rpm _ 3500 rpm # Technical Information / Handling Explanation ### **Output Shaft Bearing Load Limits** HPN Series Output Shaft Load Limits are plotted below. HPN uses radial ball bearings to support the output shaft. Please use the curve on the graph for the appropriate load coefficient (fw) that represents the expected operating condition. HPN-11A HPN-14A HPN-20A 800 500 700 600 Radial load N 300 1000 Radial 400 200 300 100 200 Axial load N Axial load N Axial load N HPN-32A HPN-40A 4500 5000 3500 --- fw=1 4000 3000 - fw=1.2 load N 2500 3000 Load coefficient 2000 fw=1~1.2 Smooth operation 1500 without impact fw=1.2~1.5 Standard operation 1000 500 2000 4000 2000 3000 Axial load N Axial load N Output shaft speed - 100 rpm, bearing life is based on 20,000 hours. The load-point is based on shaft center of radial load and axial load. #### **Output Bearing Specifications and Checking Procedure** HPGP, HPG, HPG Helical, CSF-GH, CSG-GH, HPF, and HPG-U1 are equipped with cross roller bearings. A precision cross roller bearing supports the external load (output flange). Check the maximum load, moment load, life of the bearing and static safety coefficient to maximize performance. #### Checking procedure (1) Checking the maximum moment load (M max) Calculate the maximum moment load (Mmax). Maximum moment load (M*max*) ≤ Permissible moment (Mc) (2) Checking the life Calculate the average radial load (Frav) and the average axial load (Faav). Calculate the radial load coefficient (X) and the axial load coefficient (Y). Calculate the life and check it. (3) Checking the static safety coefficient Calculate the static equivalent radial load coefficient (Po). Check the static safety coefficient. (fs) #### Specification of output bearing HPGP/HPG Series Tables 141-1, -2 and -3 indicate the cross roller bearing specifications for in-line, right angle and input shaft gears. | | Table 141-1 | | | | | | | | | | |------|--------------|---------------|------------------|-------------------|-----------------|----------------|---------------|----------------|------------|-------------| | | Pitch circle | Offset amount | Basic rated load | | | | Allowable mor | ment load Mc*3 | Moment sti | ffness Km*4 | | Size | dp | R | Basic dynamic | c load rating C*1 | Basic static lo | ad rating Co*2 | Nm | Kgfm | ×10⁴ | Kgfm/ | | | m | m | N | kgf | N | kgf | NIII | | Nm/rad | arc min | | 11 | 0.0275 | 0.006 | 3116 | 318 | 4087 | 417 | 9.50 | 0.97 | 0.88 | 0.26 | | 14 | 0.0405 | 0.011 | 5110 | 521 | 7060 | 720 | 32.3 | 3.30 | 3.0 | 0.90 | | 20 | 0.064 | 0.0115 | 10600 | 1082 | 17300 | 1765 | 183 | 18.7 | 16.8 | 5.0 | | 32 | 0.085 | 0.014 | 20500 | 2092 | 32800 | 3347 | 452 | 46.1 | 42.1 | 12.5 | | 50 | 0.123 | 0.019 | 41600 | 4245 | 76000 | 7755 | 1076 | 110 | 100 | 29.7 | | 65 | 0.170 | 0.023 | 90600 | 9245 | 148000 | 15102 | 3900 | 398 | 364 | 108 | | | Reduction | Allowable radial load*5 | Allowable axial load *5 | |----|-----------|-------------------------|-------------------------| | | ratio | N | N | | | 5 | 280 | 430 | | | (9) | 340 | 510 | | 11 | 21 | 440 | 660 | | | 37 | 520 | 780 | | | 45 | 550 | 830 | | | (3) | 400 | 600 | | | 5 | 470 | 700 | | | 11 | 600 | 890 | | 14 | 15 | 650 | 980 | | | 21 | 720 | 1080 | | | 33 | 830 | 1240 | | | 45 | 910 | 1360 | | | (3) | 840 | 1250 | | | 5 | 980 | 1460 | | | 11 | 1240 | 1850 | | 20 | 15 | 1360 | 2030 | | | 21 | 1510 | 2250 | | | 33 | 1729 | 2580 | | | 45 | 1890 | 2830 | ^{*} The ratio specified in parentheses is for the HPG Series. | o: | Reduction | Allowable radial load*5 | Allowable axial load *5 | |----|-----------|-------------------------|-------------------------| | | ratio | N | N | | | (3) | 1630 | 2430 | | | 5 | 1900 | 2830 | | | 11 | 2410 | 3590 | | 32 | 15 | 2640 | 3940 | | | 21 | 2920 | 4360 | | | 33 | 3340 | 4990 | | | 45 | 3670 | 5480 | | | (3) | 3700 | 5570 | | | 5 | 4350 | 6490 | | 50 | 11 | 5500 | 8220 | | | 15 | 6050 | 9030 | | | 21 | 6690 | 9980 | | | 33 | 7660 | 11400 | | | 45 | 8400 | 12500 | | | 4 | 8860 | 13200 | | | 5 | 9470 | 14100 | | | 12 | 12300 | 18300 | | | 15 | 13100 | 19600 | | 65 | 20 | 14300 | 21400 | | | 25 | 15300 | 22900 | | | (40) | 17600 | 26300 | | | (50) | 18900 | 28200 | ^{*} The ratio specified in parentheses is for the HPG Series. Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 #### (Note: Table 141-1, -2 and -3 Table 142-1 and -2) - *1 The basic dynamic load rating means a certain static radial load so that the basic dynamic rated life of the roller bearing is a million rotations. - The basic static load rating means a static load that gives a certain level of contact stress (4kN/mm²) in the center of the contact area between rolling element receiving the maximum load and orbit. - The allowable moment load is a maximum moment load applied to the bearing. Within the allowable range, basic performance is maintained and the bearing is operable. Check the bearing life based on the calculations shown on the next page. - The value of the moment stiffness is the average value. - The allowable radial load and allowable axial load are the values that satisfy the life of a speed reducer when a pure radial load or an axial load applies to the main bearing. (Lr + R = 0 mm for radial load and La = 0 mm for axial load) If a compound load applies, refer to the calculations shown on the next page. #### CSG-GH/CSF-GH Series Table 142-1 indicates the specifications for cross roller bearing. #### Table 142-1 | | Pitch circle | Offset amount | | Basic lo | ad rating | | | vable | Moment stiffness Km*4 | | Allowable Allowable | | |------|--------------|---------------|-------|---------------------|--------------------|--------------------|--------|-----------|-----------------------|---------|---------------------|--------------| | Size | dp | R | | lynamic
ting C*1 | Basic
load rati | static
ing Co*2 | moment | load Mc*3 | ×10⁴ | kgfm/ | radial load*5 | axial load*5 | | | m | m | N | kgf | N | kgf | Nm | kgfm | Nm/rad | arc min | N | N | | 14 | 0.0405 | 0.011 | 5110 | 521 | 7060 | 720 | 27 | 2.76 | 3.0 | 0.89 | 732 | 1093 | | 20 | 0.064 | 0.0115 | 10600 | 1082 | 17300 | 1765 | 145 | 14.8 | 17 | 5.0 | 1519 | 2267 | | 32 | 0.085 | 0.014 | 20500 | 2092 | 32800 | 3347 | 258 | 26.3 | 42 | 12 | 2938 | 4385 | | 45 | 0.123 | 0.019 | 41600 | 4245 | 76000 | 7755 | 797 | 81.3 | 100 | 30 | 5962 | 8899 | | 65 | 0.170
| 0.0225 | 81600 | 8327 | 149000 | 15204 | 2156 | 220 | 323 | 96 | 11693 | 17454 | #### HPF Series Table 142-2 indicates the specifications for cross roller bearing. #### Table 142-2 | | Pitch circle | Offset amount | | Basic lo | ad rating | | Allowable | | Moment stil | | Allowable | Allowable | |------|--------------|---------------|--------------------|--------------------|-------------------|--------------------|-----------|-----------|------------------|---------|---------------|--------------| | Size | dp | R | Basic d
load ra | ynamic
ting C*1 | Basic
load rat | static
ing Co*2 | moment | load Mc*3 | ×10 ⁴ | kgfm/ | radial load*5 | axial load*5 | | | m | m | N | kgf | N | kgf | Nm | kgfm | Nm/rad | arc min | N | N | | 25 | 0.085 | 0.0153 | 11400 | 1163 | 20300 | 2071 | 410 | 41.8 | 37.9 | 11.3 | 1330 | 1990 | | 32 | 0.1115 | 0.015 | 22500 | 2296 | 39900 | 4071 | 932 | 95 | 86.1 | 25.7 | 2640 | 3940 | #### (Note: Table 141-1, -2 and -3 Table 142-1 and -2) - *1 The basic dynamic load rating means a certain static radial load so that the basic dynamic rated life of the roller bearing is a million rotations. - *2 The basic static load rating means a static load that gives a certain level of contact stress (4kN/mm²) in the center of the contact area between rolling element receiving the maximum load and orbit. - *3 The allowable moment load is a maximum moment load applied to the bearing. Within the allowable range, basic performance is maintained and the bearing is operable. Check the bearing life based on the calculations shown on the next page. - *4 The value of the moment stiffness is the average value. - *5 The allowable radial load and allowable axial load are the values that satisfy the life of a speed reducer when a pure radial load or an axial load applies to the main bearing. (Lr + R = 0 mm for radial load and La = 0 mm for axial load) If a compound load applies, refer to the calculations shown on the next page. #### **Technical Data** #### How to calculate the maximum moment load | HPGP | HPG | CSG-GH | |--------|-----|--------| | CSF-GH | HPF | | Maximum moment load (Mmax) is obtained as follows. Make sure that $M_{max} \leq Mc$. | | | | Formula 143 | | | |--|------------------|---------|---|--|--| | M <i>max</i> =Fr <i>max</i> (Lr+R) +Fa <i>max</i> La | | | | | | | Fr <i>max</i> | Max. radial load | N (kgf) | See Fig. 143-1. | | | | Fa <i>max</i> | Max. axial load | N (kgf) | See Fig. 143-1. | | | | Lr, La | _ | m | See Fig. 143-1. | | | | | Offset amount | _ | See Fig. 143-1. | | | | R | | m | See "Output Bearing Specifications" of each series, p.141 & 142 | | | #### How to calculate the radial and the axial load coefficient | HPGP | HPG | CSG-GH | |--------|-----|--------| | CSF-GH | HPF | | The radial load coefficient (X) and the axial load coefficient (Y) | | | | | | Formula 143 | |--|---------------------|--------------------|------------------------------|--------------------|-------------| | | For | mula | | Χ | Υ | | $\frac{\text{Fa } av}{\text{Fr } av + 2(\text{Fr} av(\text{Lr} + \text{R}) + \text{Fa } av \cdot \text{La}) / \text{dp}} \leq 1.5$ | | | | 1 | 0.45 | | Fr a | Faav+2(Frav(Lr+R) | | <u>√-La) / dp</u> >1.5 | 0.67 | 0.67 | | Fr av | Average radial load | | | | • | | | | | See "How to calculate the av | erage load below." | | | Fa av | Average axial load | N (kgf)
N (kgf) | See "How to calculate the av | | | | | | | | | | | Fa av | | N (kgf) | See "How to calculate the av | erage load below." | | #### ■ How to calculate the average load (Average radial load, average axial load, average output speed) If the radial load and the axial load fluctuate, they should be converted into the average load to check the life of the cross roller bearing. Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 www.electromate.com sales@electromate.com #### How to calculate the life HPGP HPG CSG-GH CSF-GH Calculate the life of the cross roller bearing using Formula 144-1. You can obtain the dynamic equivalent load (Pc) using Formula 144-2. | | | | Formula 144-1 | |-----------------|-------------------------------------|--|---------------------------------------| | | $L_{10} = \frac{10^6}{60 \times N}$ | $\frac{1}{av} \times \left(\frac{1}{1}\right)$ | C
fw·Pc) ^{10/3} | | L ₁₀ | Life | hour | | | Nav | Ave. output speed | rpm | See "How to calculate the ave. load." | | С | Basic dynamic load rating | N (kgf) | See "Output Bearing Specs." | | ~ | | | 3 - | | Pc | Dynamic equivalent load | N (kgf) | See Formula 144-2. | | | | Formula 144-2 | |-------|--|-----------------| | Pc=X· | $\left(\operatorname{Fr}_{av} + \frac{2(\operatorname{Fr}_{av}(\operatorname{Lr} + \operatorname{R}) + \operatorname{Fa}_{av} \cdot \operatorname{La})}{\operatorname{dp}}\right)$ | +Y∙Fa <i>av</i> | | Fr av | | | See "How to calculate the ave. load." | |--------------|-------------------------|---|--| | Fa <i>av</i> | | | See How to calculate the ave. load. | | dp | Pitch Circle of roller | m | See "Output Bearing Specs." | | х | Radial load coefficient | - | See "How to calculate the radial load | | Y | Axial load coefficient | - | coefficient and the axial load coefficient." | | Lr, La | _ | m | See Figure 143-1.
See "External load influence diagram." | | R | Offset amount | m | See Figure 143-1. See "External load influence diagram" and "Output Bearing Specs" of each series. | #### Load coefficient Table 144-1 | Load status | fw | |---|------------| | During smooth operation without impact or vibration | 1 to 1.2 | | During normal operation | 1.2 to 1.5 | | During operation with impact or vibration | 1.5 to 3 | #### How to calculate the life during oscillating motion HPGP HPG CSG-GH CSF-GH Calculate the life of the cross roller bearing during oscillating motion by Formula 144-3. Figure 144-1 When it is used for a long time while the rotation speed of the output shaft is in the ultra-low operation range (0.02rpm or less), the lubrication of the bearing Note When it is used for a long time while the rotation speed of the output sharts in the data long speed on the output sharts in the ultra-low operation range, contact us. #### How to calculate the static safety coefficient HPGP HPG In general, the basic static load rating (Co) is considered to be the permissible limit of the static equivalent load. However, obtain the limit based on the operating and required conditions. Calculate the static safety coefficient (fs) of the cross roller bearing using Formula 144-4. General values under the operating condition are shown in Table 144-2. You can calculate the static equivalent load (Po) using Formula 144-5. | | | | Formula 14 | |----|------------------------|----------------------|-----------------------------| | | | $fs = \frac{Co}{Po}$ | | | | | | | | Со | Basic static load | N (kgf) | See "Output Bearing Specs." | | Ро | Static equivalent load | N (kgf) | See Formula 144-5. | #### Formula 144-5 $Po=Frmax + \frac{2M max}{} + 0.44Fa max$ Fr max Max. radial load N (kgf) See "How to calculate Fa max Max. axial load N (kgf) the max. moment load." M max Max. moment load Nm (kgfm) See "Output Bearing Specs" of each series Pitch Circle dp m Static safety coefficient Table 144-2 | Load status | fs | |--------------------------------------|------| | When high precision is required | ≧3 | | When impact or vibration is expected | ≧2 | | Under normal operating condition | ≧1.5 | ELECTROMATE Check the maximum load and life of the bearing on the input side if the reducer is an HPG input shaft unit or an HPF hollow shaft unit. #### Checking procedure #### (1) Checking maximum load Maximum moment load (Mi max) Maximum axial load (Fai max) Maximum radial load (Fri max) Maximum moment load (Mi max) ≤ Allowable moment load (Mc) Maximum axial load (Fai max) ≤ Allowable axial load (Fac) Maximum radial load (Fri max) \leq Allowable radial load (Frc) #### (2) Checking the life Calculate: Average moment load (Mi av) Average axial load (Fai av) Average input speed (Ni av) Calculate the life and check it. ### Specification of input bearing #### Specification of input bearing HPG | | | | | Table 140-1 | | | | | | |------|-------------------|----------------|------------------------------|-------------|--|--|--|--|--| | | Basic load rating | | | | | | | | | | Size | Basic dynamic | load rating Cr | Basic static load rating Cor | | | | | | | | | N | kgf | N | kgf | | | | | | | 11 | 2700 | 275 | 1270 | 129 | | | | | | | 14 | 5800 | 590 | 3150 | 320 | | | | | | | 20 | 9700 | 990 | 5600 | 570 | | | | | | | 32 | 22500 | 2300 | 14800 | 1510 | | | | | | | 50 | 35500 | 3600 | 25100 | 2560 | | | | | | | 65 | 51000 | 5200 | 39500 | 4050 | | | | | | Table 145-2 | Size | Allowable mo | ment load Mc | Allowable axi | al load Fac*1 | Allowable radial load Frc *2 | | | |------|--------------|--------------|---------------|---------------|------------------------------|-----|--| | Size | Nm | kgfm | N | kgf | N | kgf | | | 11 | 0.16 | 0.016 | 245 | 25 | 20.6 | 2.1 | | | 14 | 6.3 | 0.64 | 657 | 67 | 500 | 51 | | | 20 | 13.5 | 1.38 | 1206 | 123 | 902 | 92 | | | 32 | 44.4 | 4.53 | 3285 | 335 | 1970 | 201 | | | 50 | 96.9 | 9.88 | 5540 | 565 | 3226 | 329 | | | 65 | 210 | 21.4 | 8600 | 878 | 5267 | 537 | | ### Specification of input shaft bearing HPF | | <u> </u> | | | Table 145-3 | | | | | | | |------|-------------------
----------------|--|---------------|--|--|--|--|--|--| | | Basic load rating | | | | | | | | | | | Size | Basic dynamic | load rating Cr | d rating Basic static load rat N 10100 20100 | ad rating Cor | | | | | | | | | N | kgf | N | kgf | | | | | | | | 25 | 14500 | 1480 | 10100 | 1030 | | | | | | | | 32 | 29700 | 3030 | 20100 | 2050 | | | | | | | Table 145-4 | Size | Allowable mo | ment load Mc | Allowable axi | al load Fac*1 | Allowable radial load Frc *3 | | | |------|--------------|--------------|---------------|---------------|------------------------------|------|--| | | Nm | kgfm | N | kgf | N | kgf | | | 25 | 10 | 1.02 | 1538 | 157 | 522 | 53.2 | | | 32 | 19 | 1.93 | 3263 | 333 | 966 | 98.5 | | - (Note: Table 145-2 and 145-4) *1 The allowable axial load is the value of an axial load applied along the axis of rotation. - *2 The allowable radial load of HPG series is the value of a radial load applied at the mid-point of the input shaft. - *3 The allowable radial load of HPG series is the value of a radial load applied to the point of 20 mm from the shaft edge (input flange edge). The maximum moment load (Mimax) is calculated as follows. Check that the following formulas are established in all circumstances: Mi $max \leq Mc$ (Allowable moment load) Fai $max \leq$ Fac (Allowable axial load) #### How to calculate average load (Average moment load, average axial load, average input speed) **HPG** If moment load and axial load fluctuate, they should be converted into the average load to check the life of the bearing. How to calculate the average axial load (Faiav) $n_1t_1(|Fai_1|)^3 + n_2t_2 (|Fai_2|)^3 \cdots n_n t_n(|Fai_n|)^3$ How to calculate the average input speed (Niav) Formula 146-4 Niav = $$\frac{n_1t_1 + n_2t_2 + \dots + n_nt_n}{t_1 + t_2 + \dots + t_n}$$ #### Calculating life of input bearing Calculate the bearing life according to Calculation Formula 132-5 and check the life. Formula 146-5 | Dynamic ed | uivalent load | HPG | | Table 146-1 | |------------|---------------|------------|-----------------|-------------| | Size | | Pci | | | | 11 | 0.444 × Mi | av + 1.426 | × Fai <i>av</i> | | | 14 | 0.137 × Mi | av + 1.232 | × Fai <i>av</i> | | | 20 | 0.109 × Mi | av + 1.232 | × Fai <i>av</i> | | | 32 | 0.071 × Mi | av + 1.232 | × Fai <i>av</i> | | | 50 | 0.053 × Mi | av + 1.232 | × Fai <i>av</i> | | | 65 | 0.041 × Mi | av + 1.232 | × Fai <i>av</i> | | | Dynamic eq | uivalent load | HPF | Table 146-2 | |------------|---------------|-----------------------|-------------| | Size | | Pci | | | 25 | 121 × Mi | <i>av</i> + 2.7 × Fai | av | | 32 | 106 × Mi | <i>av</i> + 2.7 × Fai | av | Miav Average moment load Nm (kgfm) See Formula 146-2 Faiav Average axial load N (kgf) See Formula 146-3 # Assembly Assemble and mount your gearhead in accordance with these instructions to achieve the best performance. Be sure to use the recommended bolts and use a torque wrench to achieve the proper tightening torques as recommended in tables below. #### Motor assembly procedure HPGP HPG CSG-GH CSF-GH HPN (1) Turn the input shaft coupling and align the bolt head with the rubber cap hole. To properly mount the motor to the gearhead, follow the procedure outlined below, refer to figure 147-1 With the speed reducer in an upright position as illustrated in the figure below, slowly insert the motor shaft into the coupling of speed reducer. Slide the motor shaft without letting it drop down. If the speed reducer cannot be positioned upright, slowly insert the motor shaft into the coupling of speed reducer, then tighten the motor bolts evenly until the motor flange and gearhead flange are in full contact. Exercise care to avoid tilting the motor when inserting it into the gear head. Tighten the input shaft coupling bolt to the recommended torque specified in the table below. The bolt(s) or screw(s) is (are) already inserted into the input coupling when delivered. Check the bolt size on the confirmation drawing provided. #### **Bolt tightening torque** | | | | | | | | | | Tubic 147 | |-----------|-------------------|--------------|------|-------|------|------|-------|------|-----------| | Bolt size | | Bolt size M3 | | M4 M5 | | M6 | M6 M8 | | M12 | | | Tightening torque | Nm | 2.0 | 4.5 | 9.0 | 15.3 | 37.2 | 73.5 | 128 | | | | kgfm | 0.20 | 0.46 | 0.92 | 1.56 | 3.8 | 7.5 | 13.1 | Caution: Always tighten the bolts to the tightening torque specified in the table above. If the bolt is not tightened to the torque value recommended slippage of the motor shaft in the shaft coupling may occur. The bolt size will vary depending on the size of the gear and the shaft diameter of the mounted motor. Check the bolt size on the confirmation drawing provided. Two setscrews need to be tightened on size 11. See the outline dimensions on page 22 (HPGP) and page 34 (HPG standard) and page 46 (HPG helical). Tighten the screws to the tightening torque specified below. | | | Table 147-2 | | | | | |-------------------|-----------|-------------|--|--|--|--| | Bolt size | Bolt size | | | | | | | Tiekteeine teue | Nm | 0.69 | | | | | | Tightening torque | kgfm | 0.07 | | | | | (4) Fasten the motor to the gearhead flange with bolts. #### **Bolt* tightening torque** | le | 14 | 7-3 | |----|----|-----| | | 9 | | | | | | | | Table 147-3 | |-------------------|------|------|------|------|------|------|------|------|-------------| | Bolt size | | M2.5 | М3 | M4 | M5 | M6 | M8 | M10 | M12 | | Tightoning torque | Nm | 0.59 | 1.4 | 3.2 | 6.3 | 10.7 | 26.1 | 51.5 | 89.9 | | Tightening torque | kgfm | 0.06 | 0.14 | 0.32 | 0.64 | 1.09 | 2.66 | 5.25 | 9.17 | *Recommended bolt: JIS B 1176 Hexagon socket head bolt, Strength: JIS B 1051 12.9 or higher Caution: Be sure to tighten the bolts to the tightening torques specified in the table. Insert the rubber cap provided. This completes the assembly. (Size 11: Fasten screws with a gasket in two places) Figure 147-1 sales@electromate.com Toll Free Fax: (877) SERV099 CSG-GH CSF-GH Some right angle gearhead models weigh as much as 60 kg. No thread for an eyebolt is provided because the mounting orientation varies depending on the customer's needs. When mounting the reducer, hoist it using a sling paying extreme When assembling gearheads into your equipment, check the flatness of your mounting surface and look for any burrs on tapped holes. Then fasten the flange (Part A in the diagram below) using appropriate bolts. Bolt* tightening torque for flange (Part A in the diagram below) | Size | | HPN | | | | | HPGP / HPG / CSG-GH / CSF-GH | | | | | HPF | | | |-------------------|------|------|------|------|------|-------|------------------------------|------|------|------|-------|------|------|------| | | | 11 | 14 | 20 | 32 | 40 | 11 | 14 | 20 | 32 | 45/50 | 65 | 25 | 32 | | Number of bolts | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 12 | 12 | | Bolt size | | М3 | M5 | M6 | M8 | M10 | МЗ | M5 | M8 | M10 | M12 | M16 | M4 | M5 | | Mounting PCD | mm | 50 | 70 | 100 | 130 | 165 | 46 | 70 | 105 | 135 | 190 | 260 | 127 | 157 | | Tiebteeine terrin | Nm | 1.4 | 6.3 | 10.7 | 26.1 | 51.5 | 1.4 | 6.3 | 26.1 | 51.5 | 103 | 255 | 4.5 | 9.0 | | Tightening torque | kgfm | 0.14 | 0.64 | 1.09 | 2.66 | 5.26 | 0.14 | 0.64 | 2.66 | 5.25 | 10.5 | 26.0 | 0.46 | 0.92 | | Transmission | Nm | 27.9 | 110 | 223 | 528 | 1063 | 26.3 | 110 | 428 | 868 | 2030 | 5180 | 531 | 1060 | | torque | kgfm | 2.85 | 11.3 | 22.8 | 53.9 | 108.5 | 2.69 | 11.3 | 43.6 | 88.6 | 207 | 528 | 54.2 | 108 | ^{*} Recommended bolts: JIS B 1176 "Hexagon socket head bolts." Strength classification 12.9 or higher in JIS B 1051. #### Mounting the load to the output flange Follow the specifications in the table below when mounting the load onto the output flange. Figure 148-1 #### Output flange mounting specifications Bolt* tightening torque for output flange (Part B in the Figure 148-1) **HPGP** Table 148-2 | Table 140 | | | | | | | | | |---------------------|------|------|------|------|------|-------|------|--| | Size | | 11 | 14 | 20 | 32 | 50 | 65 | | | Number of bolts | | 4 | 8 | 8 | 8 | 8 | 8 | | | Bolt size | | M4 | M4 | M6 | M8 | M12 | M16 | | | Mounting PCD | mm | 18 | 30 | 45 | 60 | 90 | 120 | | | Tightening torque | Nm | 4.5 | 4.5 | 15.3 | 37.2 | 128.4 | 319 | | | rigitieiling torque | kgfm | 0.46 | 0.46 | 1.56 | 3.8 | 13.1 | 32.5 | | | Transmission torque | Nm | 25.3 | 84 | 286 | 697 | 2407 | 5972 | | | Transmission torque | kafm | 2.58 | 8.6 | 20.2 | 71.2 | 2/15 | 600 | | ^{*} Recommended bolts: JIS B 1176 "Hexagon socket head bolts." Strength classification 12.9 or higher in JIS B 1051. Bolt* tightening torque for output flange (Part B in the Figure 148-1) HPG | | | = : | , | | | | Table 146-3 | |---------------------|------|------|------|------|------|-------|-------------| | Size | | 11 | 14 | 20 | 32 | 50 | 65 | | Number of bolts | | 3 | 6 | 6 | 6 | 14 | 6 | | Bolt size | | M4 | M4 | M6 | M8 | M8 | M16 | | Mounting PCD | mm | 18 | 30 | 45 | 60 | 100 | 120 | | Tightening torque | Nm | 4.5 | 4.5 | 15.3 | 37.2 | 37.2 | 319 | | rigittering torque | kgfm | 0.46 | 0.46 | 1.56 | 3.8 | 3.80 | 32.5 | | Transmission torque | Nm | 19.0 | 63 | 215 | 524 | 2036 | 4480 | | Transmission torque | kgfm | 1.9 | 6.5 | 21.9 | 53.4 | 207.8 | 457 | Recommended bolts: JIS B 1176 "Hexagon socket head bolts." Strength classification 12.9 or higher in JIS B 1051. #### Mounting the load to the output flange Bolt* tightening torque for output flange (Part B in Figure 148-1) CSG-GH Table 149-1 | Size | | 14 | 20 | 32 | 45 | 65 | |---------------------|------|------|--------|------|-------|------| | Number of bolts | | 8 | 8 | 10 | 10 | 10 | | Bolt size | | M4 | M6 | M8 | M12 | M16 | | Mounting PCD | mm | 30 | 45 | 60 | 94 | 120 | | Tightening torque | Nm | 4.5 | 15.3 3 | 37 | 128 | 319 | | rigittering torque | kgfm | 0.46 | 1.56 | 3.8 | 3.1 3 | 32.5 | | Transmission torque | Nm | 84 | 287 | 867 | 3067 | 7477 | | | kgfm | 8.6 | 29.3 | 88.5 | 313 | 763
 Bolt* tightening torque for output flange (Part B in Figure 148-1) CSF-GH Table 149-2 | | | | | | | 10010 110 1 | |---------------------|------|------|------|------|------|-------------| | Size | | 14 | 20 | 32 | 45 | 65 | | Number of bolts | | 6 | 6 | 6 | 16 | 8 | | Bolt size | | M4 | M6 | M8 | M8 | M16 | | Mounting PCD | mm | 30 | 45 | 60 | 100 | 120 | | Tightening torque | Nm | 4.5 | 15.3 | 37.2 | 37.2 | 319 | | rigittering torque | kgfm | 0.46 | 1.56 | 3.80 | 3.80 | 32.5 | | Transmission torque | Nm | 63 | 215 | 524 | 2326 | 5981 | | Transmission torque | kgfm | 6.5 | 21.9 | 53.4 | 237 | 610 | Bolt* tightening torque for output flange (Part B in Figure 148-1) | | | | Table 149-3 | |---------------------|------|------|-------------| | Size | | 25 | | | Number of bolts | | 12 | 12 | | Bolt size | | M4 | M5 | | Mounting PCD mm | | 77 | 100 | | Tightening torque | Nm | 4.5 | 9.0 | | righterning torque | kgfm | 0.46 | 0.92 | | Transmission torque | Nm | 322 | 675 | | Transmission torque | kgfm | 32.9 | 68.9 | ^{*} Recommended bolts: JIS B 1176 "Hexagon socket head bolts." Strength classification 12.9 or higher in JIS B 1051. Gearheads with an output shaft HPN HPG HPGP CSG-GH CSF-GH Do not subject the output shaft to any impact when mounting a pulley, pinion or other parts. An impact to the the output bearing may affect the speed reducer precision and may cause reduced life or failure. # **Mechanical Tolerances** Superior mechanical precision is achieved by integrating the output flange with a high-precision cross roller bearing as a single component. The mechanical tolerances of the output shaft and mounting flange are specified below. | HPG CSG-GH | CSF-GH | | Table 150-1 | |---------------------------------|--|--|--| | Axial runout of output flange a | Radial runout of output flange pilot or output shaft b | Perpendicularity of
mounting flange
c | Concentricity of mounting flange d | | 0.020 | 0.030 | 0.050 | 0.040 | | 0.020 | 0.040 | 0.060 | 0.050 | | 0.020 | 0.040 | 0.060 | 0.050 | | | Axial runout of output flange
a
0.020
0.020 | Axial runout of output flange pilot or output shaft b 0.020 0.030 0.020 0.040 | Axial runout of output flange a Radial runout of output flange pilot or output shaft b Perpendicularity of mounting flange c 0.020 0.030 0.050 0.020 0.040 0.060 | | HPGP | HPG | | | Table 150-2 | |------|-------|-------|-------|-------------| | 50 | 0.020 | 0.040 | 0.060 | 0.050 | | G.E. | 0.040 | 0.060 | 0.000 | 0.000 | | CSG-GH | | | | Table 150-3 | |--------|-------|-------|-------|-------------| | 45 | 0.020 | 0.040 | 0.060 | 0.050 | | 0.5 | 0.000 | 0.040 | 0.000 | 0.050 | | HPF | | | | Table 150-4 | |-----|-------|-------|-------|-------------| | 25 | 0.020 | 0.040 | 0.060 | 0.050 | | 32 | 0.020 | 0.040 | 0.060 | 0.050 | * T.I.R.: Total indicator reading (T.I.R.* Unit: mm) #### Prevention of grease and oil leakage #### (Common to all models) - · Only use the recommended greases. - · Provisions for proper sealing to prevent grease leakage are incorporated into the gearheads. However, please note that some leakage may occur depending on the application or operating condition. Discuss other sealing options with our applications engineers. - · When mounting the gearhead horizontally, position the gearhead so that the rubber cap in the adapter flange is facing upwards. #### (CSG/CSF-GH Series) · Contact us when using HarmonicDrive® CSG/CSF-GH series with the output shaft facing downward (motor on top) at a constant load or rotating continuously in one direction. #### Sealing #### (Common to all models) - · Provisions for proper sealing to prevent grease leakage from the input shaft are incorporated into the gearhead. - · A double lip Teflon oil seal is used for the output shaft (HPGP/HPG uses a single lip seal), gaskets or o-rings are used on all mating surfaces, and non contact shielded bearings are used for the motor shaft coupling (Double sealed bearings (D type) are available as an option*). On the CSG/CSF-GH series, non contact shielded bearing and a Teflon oil seal with a spring is used. - Material and surface: Gearbox: Aluminum, corrosion protected roller bearing steel, carbon steel (output shaft). Adapter flange: (if provided by Harmonic Drive) high-strength aluminum or carbon steel. Screws: black phosphate. The ambient environment should not subject any corrosive agents to the above mentioned material. The product provides protection class IP 65 under the provision that corrosion from the ambient atmosphere (condensation, liquids or gases) at the running surface of the output shaft seal is prevented. If necessary, the adapter flange can be sealed by means of a surface seal (e.g. Loctite 515). #### (HPG/HPGP/HPF/HPN Series) * D type: Bearing with a rubber contact seal on both sides - · Using the double sealed bearing (D type) for the HPGP/HPG series gearhead will result in a slightly lower efficiency compared to the standard product. - An oil seal without a spring is used ON the input side of HPG series with an input shaft (HPG-1U) and HPF series hollow shaft reducer. An option for an oil seal with a spring is available for improved seal reliability, however, the efficiency will be slightly lower (available for HPF and HPG series for sizes 14 and larger). - Do not remove the screw plug and seal cap of the HPG series right angle gearhead. Removing them may cause leakage of grease or affect the precision of the gear. #### Standard Lubricants #### HPG/HPGP/HPF/HPN Series The standard lubrication for the HPG/HPGP/HPF/HPN series gearheads is grease. All gearheads are lubricated at the factory prior to shipment and additional application of grease during assembly is not required. The gearheads are lubricated for the life of the gear and do not require re-lubrication. High efficiency is achieved through the unique planetary gear design and grease selection. ### Lubricants Harmonic Grease SK-2 (HPGP/HPG-14, 20, 32) Manufacturer: Harmonic Drive Systems Inc. Base oil: Refined mineral oil Thickening agent: Lithium soap Additive: Extreme pressure agent and other Standard: NLGI No. 2 Consistency: 265 to 295 at 25°C Dropping point: 198°C PYRONOC UNIVERSAL 00 (HPG right angle gearhead/HPN) Manufacturer: Nippon Oil Co. Base oil: Refined mineral oil Thickening agent: Urea Standard: NLGI No. 00 Consistency: 420 at 25°C Dropping point: 250°C or higher Color: Light yellow EPNOC Grease AP (N) 2 (HPGP/HPG-11, 50, 65 / HPF-25, 32) Manufacturer: Nippon Oil Co. Base oil: Refined mineral oil Thickening agent: Lithium soap Additive: Extreme pressure agent and other Standard: NLGI No. 2 Consistency: 282 at 25°C Dropping point: 200°C Color: Light brown MULTEMP AC-P (HPG-X-R) Manufacturer: KYODO YUSHI CO. LTD Base oil: Composite hydrocarbon oil and diester Thickening agent: Lithium soap Additive: Extreme pressure and others Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 Standard: NLGI No. 2 Consistency: 280 at 25°C Dropping point: 200°C Color: Black viscose #### Ambient operating temperature range: -10°C to +40°C The lubricant may deteriorate if the ambient operating temperature is outside of recommended operating range. Please contact our sales office or distributor for operation outside of the ambient operating temperature range. The temperature rise of the gear depends upon the operating cycle, ambient temperature and heat conduction and radiation based on the customers installation of the gear. A housing surface temperature of 70°C is the maximum allowable limit. sales@electromate.com All gearheads are lubricated at the factory prior to shipment and additional application of grease during assembly is not necessarv. #### Lubricants Harmonic Grease SK-1A (Size 20, 32, 45, 65) Manufacturer: Harmonic Drive Systems Inc. This grease has been developed exclusively for HarmonicDrive® gears and is excellent in durability and efficiency compared to commercial general-purpose grease. Base oil: Refined mineral oil Thickening Agent: Lithium soap Additive: Extreme pressure agent and other Standard: NLGI No. 2 Consistency: 265 to 295 at 25°C Dropping point: 197°C Color: Yellow Harmonic Grease SK-2 (Size 14) Manufacturer: Harmonic Drive Systems Inc. This grease has been developed exclusively for smaller sized HarmonicDrive® gears and allows smooth wave generator rotation. Base oil: Refined mineral oil Thickening Agent: Lithium soap Additive: Extreme pressure agent and othe Standard: NLGI No. 2 Consistency: 265 to 295 at 25°C Dropping point: 198°C Color: Green Ambient operating temperature range: -10°C to +40°C The lubricant may deteriorate if the ambient operating temperature is outside the recommended temperature range. Please contact our sales office or distributor for operation outside of the ambient operating temperature range. The temperature rise of the gear depends upon the operating cycle, ambient temperature and heat conduction and radiation based on the customers installation of the gear. A housing surface temperature of 70°C is the maximum allowable limit. #### When to change the grease The life of the Harmonic Drive® gear is affected by the grease performance. The grease performance varies with temperature and deteriorates at elevated temperatures. Therefore, the grease will need to be changed sooner than usual when operating at higher temperatures. The graph on the right indicates when to change the grease based upon the temperature (when the average load torque is less than or equal to the rated output torque at 2000 rpm). Also, using the formula below, you can calculate when to change the grease when the average load torque exceeds the rated output torque (at 2000 rpm). Formula to calculate the grease
change interval when the average load torque exceeds the rated torque $$L_{GT} = L_{GTn} \times \left(\frac{Tr}{Tav} \right)^3$$ | Formula | symbols | | |---------|---------|--| | L _{GT} | Grease change interval when Tav > Tr | Input rotations | | |------------------|---------------------------------------|-----------------|--| | L _{GTn} | Grease change interval when Tav <= Tr | Input rotations | See Graph 152-1 | | Tr | Output torque at 2000 rpm | Nm, kgfm | See the "Rating table" on pages 77 & 87. | | Tav | Average load torque | Nm, kgfm | Calculation formula: See page 100. | #### When to change the grease: LGTn (when the average load torque is equal to or less than the rated * L10 Life of wave generator bearing | Reference values f | or grease | refill amou | int | | Table 152-2 | |--------------------|-----------|-------------|-----|------|-------------| | Size | 14 | 20 | 32 | 45 | 65 | | Amount: g | 0.8 | 3.2 | 6.6 | 11.6 | 78.6 | #### Precautions when changing the grease Strictly observe the following instructions when changing the grease to avoid problems such as grease leakage or increase in running torque. Table 152-1 - ●Note that the amount of grease listed in Table 152-2 is the amount used to lubricate the gear at assembly. This should be used as a reference. Do not exceed this amount when re-greasing the gearhead. - ●Remove grease from the gearhead and refill it with the same quantity. The adverse effects listed above normally do not occur until the gear has been re-greased 2 times. When re-greasing 3 times or more, it is essential to remove grease (using air pressure or other means) before re-lubricating with the same amount of grease that was removed. ## **Product Handling** # Warranty Please contact us or visit our website at www.harmonicdrive.net for warranty details for your specific product. All efforts have been made to ensure that the information in this catalog is complete and accurate. However, Harmonic Drive LLC is not liable for any errors, omissions or inaccuracies in the reported data. Harmonic Drive LLC reserves the right to change the product specifications, for any reason, without prior notice. For complete details please refer to our current Terms and Conditions posted on our website. #### Disposal When disposing of the product, disassemble it and sort the component parts by material type and dispose of the parts as industrial waste in accordance with the applicable laws and regulations. The component part materials can be classified into three categories. - (1) Rubber parts: Oil seals, seal packings, rubber caps, seals of shielded bearings on input side (D type only) - (2) Aluminum parts: Housings, motor flanges - (3) Steel parts: Other parts #### Trademark HarmonicDrive® is a registered trademark of Harmonic Drive LLC. HarmonicPlanetary® is a registered trademark of Harmonic Drive LLC. # Safetv **Warning**: Means that improper use or handling could result in a risk of death or serious injury. Caution: Means that improper use or handling could result in personal injury or damage to property. #### **Application Restrictions** Equipment for transport of humans #### This product cannot be used for the following applications: - * Space flight hardware - * Aircraft equipment - * Nuclear power equipment - * Equipment and apparatus used in residential dwellings * Equipment that directly works on human bodies - * Vacuum environments - * Automotive equipment * Personal recreation equipment - * Equipment for use in a special environment - * Medical equipment Please consult Harmonic Drive LLC beforehand if intending to use one of our product for the aforementioned applications. Fail-safe devices that prevent an accident must be designed into the equipment when the products are used in any equipment that could result in personal injury or damage to property in the event of product failure. #### Design Precaution: Be certain to read the catalog when designing the equipment. Install the equipment properly. Use only in the proper environment. Please ensure to comply with the following environmental conditions: - **/**!/ Caution - · Ambient temperature 0 to 40°C No splashing of water or oil - Do not expose to corrosive or explosive gas - · No dust such as metal powder W - Carry out the assembly and installation precisely as specified in the catalog. Observe our recommended fastening methods (including bolts used and tightening torques). - Operating the equipment without precise assembly can cause problems such as vibration, reduction in life, deterioration of precision and product failure. # ΖŅ #### Install the equipment with the required precision. - Design and assemble parts to keep all catalog recommended tolerances - Failure to hold the recommended tolerances can cause problems such as vibration, reduction in life, deterioration of precision and product #### Use the specified lubricant. - Using other than our recommended lubricant can reduce the life of the product. Replace the lubricant as recommended. - Gearheads are factory lubricated. Do not mix installed lubricant with other kinds of grease. ### Operational Precaution: Be certain to read the catalog before operating the equipment. # <u>/!\</u> #### Use caution when handling the product and parts. Do not hit the gear or any part with a hammer • If you use the equipment in a damaged condition, the gearhead may not perform to catalog specifications. It can also cause problems including #### Operate within the allowable torque range. - Do not apply torque exceeding the momentary peak torque. Applying excess torque can cause problems such as loosened bolts, generation of backlash and product failure. - An arm attached directly to the output shaft that strikes a solid object can damage the arm or cause the output of the gearhead to fail. #### Do not alter or disassemble the product or parts. Harmonic Planetary® and Harmonic Drive® products are manufactured as matched sets. Catalog ratings may not be achieved if the component parts are interchanged. #### Do not disassemble the products. Disposal of waste oil and containers to ignite or cause an explosion. Do not disassemble and reassemble the products. Original performance may not be achieved. ****!\ Warning \İ\ Warning #### Do not use your finger to turn the gear. Do not insert your finger into the gear under any circumstances. The finger may get caught in the gear causing an injury. Large sizes (45, 50 and 65) are heavy. Use caution when handling. dropped on a hand or foot. Wear protective shoes and back support They are heavy and may cause a lower-back injury or an injury if #### Stop operating the system if any abnormality occurs. - Shut down the system promptly if any abnormal sound or vibration is detected, the rotation has stopped, an abnormally high temperature is generated, an abnormal motor current value is observed or any other anomalies are detected. Continuing to operate the system may adversely affect the product or equipment. - Please contact our sales office or distributor if any anomaly is detected - Rust-proofing was applied before shipping. However, please note that rusting may occur depending on the customers' storage environment. - Although black oxide finish is applied to some of our products, it does not guarantee that rust will not form. Follow all applicable laws regarding waste disposal. Contact your distributor if you are unsure how to properly dispose of the material. Do not apply pressure to an empty container. The container may explode. Do not weld, heat, drill or cut the container. This may cause residual oil ## **Handling Lubricant** #### Precautions on handling lubricants when handling the product. - Lubricant in the eve can cause inflammation. Wear protective glasses to prevent it from getting in your eye. - Lubricant coming in contact with the skin can cause inflammation. Wear protective gloves when you handle the lubricant to prevent it from contacting your skin. - Do not ingest (to avoid diarrhea and vomiting). - Use caution when opening the container. There may be sharp edges that can cut your hand. Wear protective gloves. - Keep lubricant out of reach of children. # Caution Tightly seal the container after use. Store in a cool, dry, dark place. Keep away from open flames and high temperatures - Inhalation: Remove exposed person to fresh air if adverse effects are Ingestion: Seek immediate medical attention and do not induce vomiting - unless directed by medical personnel. Eyes: Flush immediately with water for at least 15 minutes. Get immediate - medical attention. Skin: Wash with soap and water. Get medical attention if irritation ## Caution Disposal \\ Please dispose of as industrial waste. Please dispose of the products as industrial waste when their useful life is over | NOTES | |-------|
 | | | | | | | | | | NOTES | |-------| NOTES | |-------| # **Major Applications of Our Products** **Processing Machine Tools** Measurement, Analytical and Test Systems **Medical Equipment** **Energy** Courtesy of Haliiburton/Sperry Drilling Services Crating and Packaging Machines Source: National observatory of Inter-University Research Institute Corporation Space Flight Hardware Rover image created by Dan Maas, copyrighted to Cornel and provided courtesy NASA/ JPL-Caltech. # **Experts in Precision Motion Control** # **Other Products** ### HarmonicDrive® Gearing HarmonicDrive® speed reducer delivers precise motion control by utilizing the strain wave gearing principle. ## Rotary Actuators High-torque actuators combine performance matched
servomotors with HarmonicDrive® gears to deliver excellent dynamic control characteristics. #### **Linear Actuators** Compact linear actuators combine a precision lead screw and HarmonicDrive® gear. Our versatile actuators deliver both ultra precise positioning and high torque. ## **CSF Mini Gearheads** CSF mini gearheads provide high positioning accuracy in a super-compact package. ## **Harmonic Drive LLC** **Boston US Headquarters** 247 Lynnfield Street Peabody, MA 01960 **New York Sales Office** 100 Motor Parkway Suite 116 Hauppauge, NY 11788 **California Sales Office** 333 W. San Carlos Street Suite 1070 San Jose, CA 95110 **Chicago Sales Office** 137 N. Oak Park Ave., Suite 410 Oak Park, IL 60301 T: 800.921.3332 T: 978.532.1800 F: 978.532.9406 www.HarmonicDrive.net **Group Companies** Harmonic Drive Systems, Inc. 6-25-3 Minami-Ohi, Shinagawa-ku Tokyo 141-0013, Japan Harmonic Drive AG Hoenbergstrasse, 14, D-6555 Limburg/Lahn Germany Harmonic Drive®, Harmonic Gearhead®, Harmonic Planetary® and Quick Connect® are registered trademarks of Harmonic Drive LLC. All other trademarks are property of their respective owners. Rev-20161122 Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099